第一范文网 - 专业文章范例文档资料分享平台

52第八章 立体几何与空间向量 8.8 立体几何中的向量方法(二) - 求空间角和距离

来源:用户分享 时间:2025/11/20 15:32:55 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

§8.8 立体几何中的向量方法(二)——求空间角和距离

最新考纲 1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题. 2.了解向量方法在研究立体几何问题中的应用. 考情考向分析 本节是高考中的必考内容,涉及用向量法计算空间异面直线所成角、直线和平面所成角、二面角及空间距离等内容,考查热点是空间角的求解.题型以解答题为主,要求有较强的数学运算素养,广泛应用函数与方程思想、转化与化归思想.

1.两条异面直线所成角的求法

设a,b分别是两异面直线l1,l2的方向向量,则

范围 求法

2.直线与平面所成角的求法

设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=3.求二面角的大小

(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小→→θ=〈AB,CD〉.

|a·n|

. |a||n|

l1与l2所成的角θ a与b的夹角β [0,π] cos β=a·b |a||b|?0,π? ?2?|a·b|cos θ= |a||b|

(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小

θ满足|cos θ|=|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角). 概念方法微思考

1.利用空间向量如何求线段长度?

2.如何求空间点面之间的距离?

已知AB为平面α的一条斜线段,n为平面α的法向量,则点B到平面α的距离为

题组一 思考辨析

1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( )

(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ) (3)两个平面的法向量所成的角是这两个平面所成的角.( )

ππ

0,?,直线与平面所成角的范围是?0,?,二面角的范围是[0,π].(4)两异面直线夹角的范围是? ?2??2?( )

(5)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是π-θ.( ) 题组二 教材改编

2.[P104T2]已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为( ) A.45° C.45°或135°

B.135° D.90°

3.[P117A组T4(2)]如图,正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为22,则AC1与侧面ABB1A1所成的角为______.

题组三 易错自纠

4.在直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA

=CC1,则BM与AN所成角的余弦值为( ) 12302A. B. C. D. 105102

15.已知向量m,n分别是直线l和平面α的方向向量和法向量,若cos〈m,n〉=-,则

2l与α所成的角为________.

题型一 求异面直线所成的角

例1 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.

(1)证明:平面AEC⊥平面AFC;

(2)求直线AE与直线CF所成角的余弦值.

跟踪训练1 三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,N,M分别是A1B1,A1C1的中点,则AM与BN所成角的余弦值为( ) 1374A. B. C. D. 105105题型二 求直线与平面所成的角

例2 (2018·全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.

(1)证明:平面PEF⊥平面ABFD; (2)求DP与平面ABFD所成角的正弦值.

思维升华 若直线l与平面α的夹角为θ,直线l的方向向量l与平面α的法向量n的夹角为ππ|l·n|

β,则θ=-β或θ=β-,故有sin θ=|cos β|=.

22|l||n|

跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.

(1)证明:PO⊥平面ABC;

(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值.

52第八章 立体几何与空间向量 8.8 立体几何中的向量方法(二) - 求空间角和距离.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5l8m195wz7553973044s2xc786b4a900yt0_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top