第一范文网 - 专业文章范例文档资料分享平台

辽宁省沈阳市大东区2017-2018学年高三下学期高考模拟数学(文)试卷 Word版含解析

来源:用户分享 时间:2025/8/5 16:21:27 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴,

设g(x)=lnx+x+,则=,

当x∈(0,2)时g′(x)<0,函数g(x)单调递减; 当x∈(2,+∞)时g′(x)>0,函数g(x)单调递增; 所以函数g(x)的最小值为g(2)=5+ln2, 从而实数a的取值范围为(﹣∞,5+ln2]; (Ⅱ)当

时,构造函数

由题意有G(x)≤0对x∈(1,+∞)恒成立,因为G′(x)=lnx﹣ax+1, 当a≤0时,G′(x)=lnx﹣ax+1>0, 所以G(x)在(1,+∞)上单调递增,

则G(x)>G(0)=0在(0,+∞)上成立,与题意矛盾. 当a≥1时,令φ(x)=G′(x), 则

上单调递减,

所以φ(x)≤φ(1)=1﹣a≤0,所以G(x)在(1,+∞)上单调递减, 所以G(x)≤G(1)=0在(1,+∞)上成立,符合题意. 当0<a<1时,

,所以

上单调递增,

上单调递减,因为φ(1)=1﹣a>0,

所以

成立,即G′(x)>0在(1,)上成立,

所以G(x)>0在(1,)上单调递增,

则G(x)>G(1)=0在x∈(1,)上成立,与题意矛盾.

综上知a的最小值为1.

点评:本题考查了利用导数研究函数的单调性,考查了利用导数求区间上的最值,训练了分类讨论的思想,属难题.

(请考生从22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分)选修4-1:几何证明选讲

22.如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.

2

(1)求证:CE=CD?CB;

(2)若AB=BC=2,求CE和CD的长.

考点:与圆有关的比例线段. 专题:选作题;立体几何.

2

分析:(1)要证CE=CD?CB,结合题意,只需证明△CED∽△CBE即可,故连接BE,利用弦切角的知识即可得证;

(2)在Rt三△OBC中,利用勾股定理即可得出CE的长,由(1)知,CE=CD?CB,代入CE即可得出CD的长.

解答: (1)证明:连接BE. ∵BC为⊙O的切线∴∠ABC=90°

∵AB为⊙O的直径∴∠AEB=90° … ∴∠DBE+∠OBE=90°,∠AEO+∠OEB=90°

∵OB=OE,∴∠OBE=∠OEB∴∠DBE=∠AEO … ∵∠AEO=∠CED∴∠CED=∠CBE, ∵∠C=∠C∴△CED∽△CBE, ∴

,∴CE=CD?CB …

2

2

(2)解:∵OB=1,BC=2,∴OC=,∴CE=OC﹣OE=﹣1 …

22

由(1)CE=CD?CB得:(﹣1)=2CD,∴CD=3﹣ …

点评:本题主要考查了切线的性质及其应用,同时考查了相似三角形的判定和解直角三角形等知识点,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.

选修4-4:坐标系与参数方程 23.已知:动点P、Q都在曲线C:

(t为参数)上,对应参数分别为t=α与t=2α

(0<α<2π),M为PQ的中点. (Ⅰ)求M的轨迹的参数方程;

(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.

考点:参数方程化成普通方程.

专题:计算题;坐标系和参数方程. 分析:(Ⅰ)利用参数方程,可得M的坐标,消去参数,即可求出M的轨迹的参数方程; (Ⅱ)利用距离公式,将M到坐标原点的距离d表示为α的函数,当α=π时,d=0,即可判断M的轨迹是否过坐标原点. 解答: 解:(Ⅰ)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α), 因此M(cosα+cos2α,sinα+sin2α) M的轨迹的参数方程为(Ⅱ)M点到坐标原点的距离

,…

当α=π时,d=0,故M的轨迹过坐标原点 … 点评:本题考查参数方程的运用,考查学生分析解决问题的能力,正确运用参数方程是关键.

选修4-5:不等式选讲

24.设函数f(x)=|2x﹣7|+1.

(1)求不等式f(x)≤|x﹣1|的解集;

(2)若存在x使不等式f(x)≤ax成立,求实数a的取值范围.

考点:绝对值不等式的解法. 专题:不等式的解法及应用. 分析:(Ⅰ)原不等式等价于|2x﹣7|+1≤|x﹣1|,分类讨论,求得它的解集.

(Ⅱ) 由函数y=f(x)与函数y=ax的图象可知,当且仅当a≥,或a<﹣2时,函数y=f(x)与函数y=ax的图象有交点,从而得到实数a的取值范围. 解答: 解:(Ⅰ)原不等式等价于|2x﹣7|+1≤|x﹣1|, 当x<1时,﹣(2x﹣7)+1≤﹣(x﹣1),解得x≥7,∴x不存在; 当1≤x≤时,﹣(2x﹣7)+1≤x+1,解得x≥3,∴3≤x≤; 当x>时,2x﹣7+1≤x﹣1,解得 x≤5,∴<x≤5. 综上,不等式的解集为[3,5].

(Ⅱ) 由函数y=f(x)与函数y=ax的图象可知,

当且仅当a≥,或a<﹣2时,函数y=f(x)与函数y=ax的图象有交点, 故存在x使不等式f(x)≤ax成立时,a的取值范围是(﹣∞﹣2)∪[+∞).

点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.

辽宁省沈阳市大东区2017-2018学年高三下学期高考模拟数学(文)试卷 Word版含解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5n6p42nj6g81m9s40mcz3j4le87moy00j6s_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top