???????P??Q??R?dxdydz????x?y?z?????x2?y2?1dxdydz? ??? ?????x2?y2?1?dxdydz?????x2?y2?1?dxdydz?
?3?4??2?220d??0?d?????2?1?dz? ??2?110d??0?d???2???1?dz?
?2??20??3????2???d??
?2??1??30????1???d??
2?2???1?2?4??2?1513?5??3????
01?2???14121513?163?4??2??5??3?????
030七、证明题(6分)
设f?x?在点x?0的某一邻域内具有二阶连续导数, ?且limf?x?x?0x?0,证明:级数n?f?1?1n?绝对收敛。
证明: 因为:limf?x?x?0x?0
所以:
f?x?x?? (其中limx?0??0)
f?x???x ?limx?0f?x??limx?0?x?0?f?0??0
所以: limf?x?x??f?0?x?0x?limf?x?0x?0?f??0??0
由泰勒公式:
f?x??f?????2!x2
11
由于f?x?在点x?0的某一邻域内具有二阶连续导数,故当x充分小时,f???x??2M, 故f?x??Mx2
1?1?即当n充分大时,f???M2
?n??所以级数?f?1n?1n?绝对收敛。n
12
相关推荐: