第一范文网 - 专业文章范例文档资料分享平台

2020年浙江省金华市中考数学模拟试卷(解析版)

来源:用户分享 时间:2025/7/23 19:49:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∵a>0, ∴b>0,c<0,

∴abc<0,故①错误,不符合题意; ②∵抛物线与x轴有交点,

∴b2﹣4ac>0,故②正确,符合题意;

③∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故③正确,符合题意; ④∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上, ﹣0.5>﹣2,则y1<y2;故④错误,不符合题意; 故选:B.

【点评】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

10.如图,在平面直角坐标系中,点A(﹣6,0),点B(0,8),点C在线段AB上,点D在y轴上,将∠ABO沿直线CD翻折,使点B与点A重合.若点E在线段CD延长线上,且CE=5,点M在y轴上,点N在坐标平面内,如果以点C、E、M、N为顶点的四边形是菱形,那么点N有( )

A.2个 B.3个 C.4个 D.5个

【分析】分别以EC为边,EC为对角线讨论可知满足条件的菱形.

解:如图中,分别以EC为边,EC为对角线讨论可知满足条件的菱形有5个.

故选:D.

【点评】考查了菱形的判定,坐标与图形变化﹣对称,注意解题过程中“数形结合”数学思想的应用.

二、填空题(本题有6小题,每题4分,满分24分,将答案填在答题纸上) 11.因式分解:4x2﹣9= (2x+3)(2x﹣3) . 【分析】利用平方差进行分解即可. 解:原式=(2x+3)(2x﹣3), 故答案为:(2x+3)(2x﹣3).

【点评】此题主要考查了因式分解,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).12.数据2,9,8,4中最大值与最小值的差是 7 .

【分析】先从数据中找出最大的数和最小的数,然后用最大的数减去最小的数即可. 解:在数据2,9,8,4中,最大的数是9,最小的数是2, 所以最大值与最小值的差是:9﹣2=7. 故答案为:7

【点评】本题考查有理数大小比较,属于基础题型.

13.如图,D、E分别是△ABC的边BC、AB上的点,AD、CE相交于点F,AE=EB,BD=BC,则CF:EF= 12 .

【分析】作EH∥BC,根据△AEH∽△ABD,得到根据相似三角形的性质列出比例式,计算即可. 解:作EH∥BC交AD于H, 则△AEH∽△ABD, ∴

=,

==,证明△CFD∽△EFH,

∵BD=BC, ∴CD=2BD, ∴

∵EH∥BC, ∴△CFD∽△EFH, ∴

=12,即CF:EF=12,

故答案为:12.

【点评】本题考查的是相似三角形的判定和性质,掌握作辅助线构造相似三角形的一般方法是解题的关键.

14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组

的解集为 ﹣2<x<2 .

【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可. 解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4), ∴﹣4=﹣n﹣2,解得n=2, ∴P(2,﹣4),

又∵y=﹣x﹣2与x轴的交点是(﹣2,0), ∴关于x的不等式组故答案为:﹣2<x<2.

【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.

15.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,

),则k的值为 8 .

的解集为:﹣2<x<2.

【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k的值.

解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,

2020年浙江省金华市中考数学模拟试卷(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5sw2z6h0cp3fre38hic91cf865brly010k1_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top