数学试卷
(2019?郴州)掷一枚质地均匀的骰子,骰子的六个面上分别标有数字1~6,掷得朝上的一面的数字为奇数的概率是
.
考点: 概率公式. 分析: 让向上一面的数字是奇数的情况数除以总情况数6即为所求的概率. 解答: 解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中, 奇数为1,3,5,则向上一面的数字是奇数的概率为=. 故答案为:. 点评: 此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比. (2019?衡阳)“a是实数,|a|≥0”这一事件是( ) A.必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件 考点: 随机事件. 分析: 根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答. 解答: 解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值, 因为a是实数, 所以|a|≥0. 故选A. 点评: 用到的知识点为:必然事件指在一定条件下一定发生的事件. (2019,娄底)课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是( ) A.
1111 B. C. D. 2346 .
(2019?湘西州)小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是
考点: 几何概率. 分析: 先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再求出S1=S2即可. 解答: 解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等, 根据平行线的性质易证S1=S2,故阴影部分的面积占一份, 故针头扎在阴影区域的概率为. 数学试卷
点评: 此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比. (2019,永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是
(2019,成都)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:
等级 A B C 合 计 成绩(用s表示) 90≤s≤100 80≤s<90 频数 x 频率 0.08 y 35 11 50 s<80 0.22 1 请根据上表提供的信息,解答下列问题: (1)表中的x的值为_______,y的值为________
(2)将本次参赛作品获得A等级的学生一次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.
(1)4, 0.7 (2)树状图(或列表)略,P=
21? 126(2019,成都)若正整数n使得在计算n?(n?1)?(n?2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,
7抽到偶数的概率为_______.
11(2019?达州)某中学举行“中国梦·我的梦”演讲比赛。志远班的班长和学习委员都想去,
于是老师制作了四张标有算式的卡片,背面朝上洗匀后,先由班长抽一张,再由学习委员在余下三张中抽一张。如果两张卡片上的算式都正确,班长去;如果两张卡片上的算式都错误,学习委员去;如果两张卡片上的算式一个正确一处错误,则都放回去,背面朝上洗匀后再抽。
数学试卷
这个游戏公平吗?请用树状图或列表的方法,结合概率予以说明。 解析:公平.………………………(1分)
用列表法或树状图列出该事件的等可能情况如下:
由此可知该事件共有12种等可能结果.(4分) ∵四张卡片中,A、B中的算式错误,C、D中的算式正确,
∴都正确的有CD、DC两种,都错误的有AB、BA两种.………………………(5分)
………………………
21=, 12621学习委员去的概率P(学习委员去)==,
126∴班长去的概率P(班长去)=
P(班长去)=P(学习委员去)
∴这个游戏公平.………………………(7分)
(2019?德州)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于否则不算过关.则能过第二关的概率是 A.
52n,则算过关;413511 B. C. D. 181849(2019?广安)6月5日是“世界环境日”,广安市某校举行了“洁美家园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2). (1)补全条形统计图.
(2)学校决定从本次比赛中获得A和B的学生中各选出一名去参加市中学生环保演讲比赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率. 考点: 条形统计图;扇形统计图;列表法与树状图法. 数学试卷
专题: 计算题 分析: (1)根据等级为A的人数除以所占的百分比求出总人数,进而求出等级B的人数,补全条形统计图即可; (2)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率. 解答: 解:(1)根据题意得:3÷15%=20(人), 故等级B的人数为20﹣(3+8+4)=5(人), 补全统计图,如图所示; (2)列表如下: 男 男 女 女 女 男 (男,男) (男,男) (女,男) (女,男) (女,男) 男 (男,男) (男,男) (女,男) (女,男) (女,男) 女 (男,女) (男,女) (女,女) (女,女) (女,女) 所有等可能的结果有15种,其中恰好是一名男生和一名女生的情况有8种, 则P恰好是一名男生和一名女生=. 点评: 此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键. (2019?乐山)在一个布口袋内装有白、红、黑三种颜色的小球,它们除颜色之外没有任何其他区别,其中有白球5只、红球3只、黑球1只。袋中的球已经搅匀,闭上眼睛随机地从袋中取出1只球,取出红球的概率是
(2019?泸州)在一只不透明的口袋中放入红球6个,黑球2个,黄球n个。这些球除颜色不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为
1,则放入口袋3中的黄球总数n= .
(2019?绵阳)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( ) A. B. C. D.
(2019?内江)同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物
2
线y=﹣x+3x上的概率为( )
16152535数学试卷
A. B. C. D. 考点: 列表法与树状图法;二次函数图象上点的坐标特征. 专题: 阅读型. 分析: 画出树状图,再求出在抛物线上的点的坐标的个数,然后根据概率公式列式计算即可得解. 解答: 解:根据题意,画出树状图如下: 一共有36种情况, 22当x=1时,y=﹣x+3x=﹣1+3×1=2, 22当x=2时,y=﹣x+3x=﹣2+3×2=2, 22当x=3时,y=﹣x+3x=﹣3+3×3=0, 22当x=4时,y=﹣x+3x=﹣4+3×4=﹣4, 22当x=5时,y=﹣x+3x=﹣5+3×5=﹣10, 22当x=6时,y=﹣x+3x=﹣6+3×6=﹣18, 所以,点在抛物线上的情况有2种, P(点在抛物线上)==. 故选A. 点评: 本题考查了列表法与树状图法,二次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比. 一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是( ) 1 A.B. C. D. 考点: 列表法与树状图法;三角形三边关系. 分析: 先通过列表展示所有4种等可能的结果数,利用三角形三边的关系得到其中三个数能构成三角形的有2,2,3;3,2,3,2;4,2,3共三种可能,然后根据概率的定义计算即可. 解答: 解:列表如下: 共有4种等可能的结果数,其中三个数能构成三角形的有2,2,3;3,2,3,2;4,2,3. 所以这张卡片与口袋外的两张卡片上的数能构成三角形的概率=. 故选C. 数学试卷
点评: 本题考查了列表法与树状图法:先通过列表法或树状图法展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的定义计算这个事件的概率=.也考查了三角形三边的关系. (2019?雅安)从﹣1,0,,π,3中随机任取一数,取到无理数的概率是 . 考点: 概率公式;无理数. 分析: 数据﹣1,0,,π,3中无理数只有π,根据概率公式求解即可. 解答: 解∵数据﹣1,0,,π,3中无理数只有π, ∴取到无理数的概率为:, 故答案为: 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. (2019?雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题: (1)这次被调查的学生共有 200 人; (2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
考点: 条形统计图;扇形统计图;列表法与树状图法. 专题: 计算题. 分析: (1)由喜欢篮球的人数除以所占的百分比即可求出总人数; (2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可; (3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率. 解答: 解:(1)根据题意得:20÷=200(人), 则这次被调查的学生共有200人; 数学试卷
(2)补全图形,如图所示: (3)列表如下: 甲 乙 丙 甲 ﹣﹣﹣ (乙,甲) (丙,甲) 乙 (甲,乙) ﹣﹣﹣ (丙,乙) 丙 (甲,丙) (乙,丙) ﹣﹣﹣ 丁 (甲,丁) (乙,丁) (丙,丁) 所有等可能的结果为12种,其中符合要求的只有2种, 则P==. 丁 (丁,甲) (丁,乙) (丁,丙) ﹣﹣﹣ 点评: 此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键. (2019?资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球 A A.12个
B.16个
C. 20个
D.30个
(2019?自贡)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( ) A.B. C. D. 考点: 列表法与树状图法;轴对称图形. 分析: 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案. 解答: 解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆, 画树状图得: 数学试卷
∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况, ∴抽到卡片上印有的图案都是轴对称图形的概率为:=. 故选D. 点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. (2019?自贡)为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图.
(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;
(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率. 考点: 条形统计图;扇形统计图;列表法与树状图法. 分析: (1)根据志愿者有6名的班级占20%,可求得班级总数,再求得志愿者是2名的班数,进而可求出每个班级平均的志愿者人数; (2)由(1)得只有2名志愿者的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,则所选两名志愿者来自同一个班级的概率. 解答: 解:(1)∵有6名志愿者的班级有4个, ∴班级总数为:4÷20%=20(个), 有两名志愿者的班级有: 20﹣4﹣5﹣4﹣3﹣2=2(个),如图所示: 该年级平均每班有; (4×6+5×5+×4+3×3+2×2+2×1)=4(名), 数学试卷
(2)由(1)得只有2名文明行为劝导志愿者的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班, 由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况, 则所选两名文明行为劝导志愿者来自同一个班级的概率为:=. 点评: 此题主要考查了条形统计图与扇形统计图的综合应用以及树状图法求概率,根据图象得出正确信息是解题关键. (2019鞍山)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.
(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况. (2)请判断该游戏对双方是否公平?并说明理由. 考点:游戏公平性;列表法与树状图法. 分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可 解答:解:法一,列表
数学试卷
法二,画树形图
(1)从上面表中(树形图)可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6; (2)因为和为偶数有5次,和为奇数有4次,所以P(小明胜)=,P(小亮胜)=, 所以:此游戏对双方不公平. 点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.
(2019?大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全
相同。从袋子中随机摸出一个球,它是黄球的概率为( ) A.1/3 B.2/5 C.1/2 D.3/5
(2019?沈阳)下列事件中,是不可能事件的是( )
A.买一张电影票,座位号是奇数 B.射击运动员射击一次,命中9环. C.明天会下雨 D.度量三角形的内角和,结果是360°
(2019?沈阳)在一个不透明的盒子中放有三张卡片,每张卡片上写有意个实数,分别为3,
2,2?6。(卡片除了实数不同外,其余均相同)
(1)从盒子中随机抽取一张卡片,请直接 写出卡片上的实数是3的概率; ..
(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请
你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率。 (2019?铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ) A.16个 B. 15个 C. 13个 D. 12个 考点: 利用频率估计概率. 分析: 由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可. 解答: 解:设白球个数为:x个, ∵摸到红色球的频率稳定在25%左右, ∴口袋中得到红色球的概率为25%, ∴=, 解得:x=12, 数学试卷
故白球的个数为12个. 故选:D. 点评: 此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键. (2019?铁岭)为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整). (1)这次调查中,一共查了 200 名学生: (2)请补全两幅统计图:
(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.
考点: 条形统计图;扇形统计图;列表法与树状图法. 分析: (1)根据A类的人数和所占的百分比,即可求出总人数; (2)用整体1减去A、C、D类所占的百分比,即可求出B所占的百分比;用总人数乘以所占的百分比,求出C的人数,从而补全图形; (3)根据题意采用列举法,举出所有的可能,注意要做到不重不漏,再根据概率公式即可得出答案. 解答: 解:调查的总学生是=200(名); 故答案为:200. (3)B所占的百分比是1﹣15%﹣20%﹣30%=35%, C的人数是:200×30%=60(名), 补图如下: 数学试卷
(3)用A1,A2,A3表示3名喜欢毽球运动的学生,B表示1名跳绳运动的学生, 则从4人中选出2人的情况有:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B),共计6种, 选出的2人都是最喜欢毽球运动的学生有(A1,A2),(A1,A3),(A2,A3)共计3种, 则两人均是最喜欢毽球运动的学生的概率=. 点评: 此题考查了扇形图与概率的知识,综合性比较强,解题时要注意认真审题,理解题意;在用列举法求概率时,一定要注意不重不漏.用到的知识点为:概率=所求情况数与总情况数之比. (2019?鄂州)一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“鄂”、“州”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一个球,球上的汉字刚好是“鄂”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的概率P1;
(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的概率为P2,指出P1,P2的大小关系(请直接写出结论,不必证明). 考点: 列表法与树状图法;概率公式. 分析: (1)由有汉字“灵”、“秀”、“鄂”、“州”的四个小球,任取一球,共有4种不同结果,利用概率公式直接求解即可求得答案; (2)首先根据题意画出树状图,然后根据树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的情况,再利用概率公式即可求得答案;注意是不放回实验; (3)首先根据题意画出树状图,然后根据树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的情况,再利用概率公式即可求得答案;注意是放回实验. 解答: 解:(1)∵有汉字“灵”、“秀”、“鄂”、“州”的四个小球,任取一球,共有4种不同结果, ∴球上汉字刚好是“鄂”的概率 P=; (2)画树状图得: 数学试卷
∵共有12种不同取法,能满足要求的有4种, ∴P1==; (3)画树状图得: ∵共有16种不同取法,能满足要求的有4种, ∴P2==; ∴P1>P2. 点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. (2019?恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
A. B. C. D. 考点: 几何概率;平行四边形的性质. 分析: 先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可. 解答: 解:∵四边形是平行四边形, ∴对角线把平行四边形分成面积相等的四部分, 观察发现:图中阴影部分面积=S四边形, ∴针头扎在阴影区域内的概率为, 故选:B. 点评: 此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比. 数学试卷
(2019?恩施州)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为. (1)求袋子里2号球的个数.
(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率. 考点: 列表法与树状图法;一次函数的性质;概率公式. 分析: (1)首先设袋子里2号球的个数为x个.根据题意得:=,解此方程即可求得答案; (2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与点A(x,y)在直线y=x下方的情况,再利用概率公式即可求得答案. 解答: 解:(1)设袋子里2号球的个数为x个. 根据题意得:=, 解得:x=2, 经检验:x=2是原分式方程的解, ∴袋子里2号球的个数为2个. (2)列表得: 3 (1,3) (2,3) (2,3) (3,3) (3,3) ﹣ 3 (1,3) (2,3) (2,3) (3,3) ﹣ (3,3) 3 (1,3) (2,3) (2,3) ﹣ (3,3) (3,3) 2 (1,2) (2,2) ﹣ (3,2) (3,2) (3,2) 2 (1,2) ﹣ (2,2) (3,2) (3,2) (3,2) 1 ﹣ (2,1) (2,1) (3,1) (3,1) (3,1) 1 2 2 3 3 3 ∵共有30种等可能的结果,点A(x,y)在直线y=x下方的有11个, ∴点A(x,y)在直线y=x下方的概率为:. 点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意:概率=所求情况数与总情况数之比. (2019?黄冈)为了倡导“节约用水,从我做起”,黄岗市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图. (1) 请将条形统计图补充完整;
(2) 求这100个样本数据的平均数,众数和中位数; (3) 根据样本数据,估计黄岗市直机关500户家庭中月平均用水量不超过12吨的约有多
少户?
数学试卷
18题图
19.(6分)(2019?黄冈)如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张. 19题图
(1) 用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示); (2) 求摸出的两张牌同为红色的概率.
2019?黄石)甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心
中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n。若m、n满足
m?n?1,则称甲、乙两人“心有灵犀”。则甲、乙两人“心有灵犀”的概率
是 . 答案:
5 8解析:记甲乙选的数字为(m,n),则有16种可能,符合|m-n|≤1的有:(0,0),(1,1),
(2,2),(3,3),(0,1),(1,2),(2,3),(1,0),(2,1),(3,2),共10
种,所以,所求概率为:
105? 1682019?荆门)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时: (1)求三辆车全部同向而行的概率; (2)求至少有两辆车向左转的概率;
(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿
数学试卷
灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整. 考点: 列表法与树状图法. 分析: (1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案; (2)由(1)中的树状图即可求得至少有两辆车向左转的情况,然后利用概率公式求解即可求得答案; (3)由汽车向右转、向左转、直行的概率分别为解答: 解:(1)分别用A,B,C表示向左转、直行,向右转; 根据题意,画出树形图: ,即可求得答案. ∵共有27种等可能的结果,三辆车全部同向而行的有3种情况, ∴P(三车全部同向而行)=; (2)∵至少有两辆车向左转的有7种情况, ∴P(至少两辆车向左转)= (3)∵汽车向右转、向左转、直行的概率分别为, ; ∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下: 左转绿灯亮时间为90×=27(秒),直行绿灯亮时间为90×=27(秒),右转绿灯亮的时间为90×=36(秒). 点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意:概率=所求情况数与总情况数之比. (2019?荆州)我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩(得分为整数,满分为100分)分成四组,绘成了如下尚不完整的统计图表. 组别 第一组 第二组 成绩 90≤x<100 80≤x<90 组中值 95 85 频数 4 m 数学试卷
第三组 第四组 70≤x<80 60≤x<70 75 65 n 21 根据图表信息,回答下列问题: (1)参加活动选拔的学生共有 人;表中m= ,n= ;
(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;
(3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B 的概率.
(2019?潜江)下列事件中,是必然事件的为 A.抛掷一枚质地均匀的硬币,落地后正面朝上 B.江汉平原7月份某一天的最低气温是 C.通常加热到100℃时,水沸腾
D.打开电视,正在播放节目《男生女生向前冲》
(2019?潜江)有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙
能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是 .
(2019?十堰)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
-2℃
(1)九(1)班的学生人数为 40 ,并把条形统计图补充完整;
(2)扇形统计图中m= 10 ,n= 20 ,表示“足球”的扇形的圆心角是 72 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率. 考点: 条形统计图;扇形统计图;列表法与树状图法. 分析: (1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可; (2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360°即可; (3)画出树状图,然后根据概率公式列式计算即可得解. 解答: 解:(1)九(1)班的学生人数为:12÷30%=40(人), 喜欢足球的人数为:40﹣4﹣12﹣16=40﹣32=8(人), 数学试卷
补全统计图如图所示; (2)∵×100%=10%, ×100%=20%, ∴m=10,n=20, 表示“足球”的扇形的圆心角是20%×360°=72°; 故答案为:(1)40;(2)10;20;72; (3)根据题意画出树状图如下: 一共有12种情况,恰好是1男1女的情况有6种, 所以,P(恰好是1男1女)==. 点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. (2019?武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ) A.摸出的三个球中至少有一个球是黑球. B.摸出的三个球中至少有一个球是白球. C.摸出的三个球中至少有两个球是黑球. D.摸出的三个球中至少有两个球是白球. 答案:A
解析:因为白球只有2个,所以,摸出三个球中,黑球至少有一个,选A。
(2019?武汉)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,
其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁. (1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率.
解析:(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为a、b,其余两把钥
AB数学试卷
匙分别为m、n,根据题意,可以画出如下树形图:
由上图可知,上述试验共有8种等可能结果.(列表法参照给分)
(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开
锁的结果有2种,且所有结果的可能性相等. ∴P(一次打开锁)=
21?. 84(2019?襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是
.
考点: 列表法与树状图法. 专题: 图表型. 分析: 可以看做是李老师先选择第一站,然后儿子再进行选择,画出树状图,再根据概率公式解答. 解答: 解:李老师先选择,然后儿子选择, 画出树状图如下: 一共有9种情况,都选择古隆中为第一站的有1种情况, 所以,P(都选择古隆中为第一站)=. 故答案为:. 点评: 本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. (2019?孝感)在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取1瓶,取到已过保质期饮料的概率为 (结果用分数表示). 考点: 概率公式. 分析: 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 解答: 解:∵在5瓶饮料中,有2瓶已过了保质期, ∴从这5瓶饮料中任取1瓶,取到已过保质期饮料的概率为; 故答案为:. 数学试卷
点评: 此题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. (2019?孝感)如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.
(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?
(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?
考点: 条形统计图;列表法与树状图法;游戏公平性. 分析: (1)假设出去B地的人数为x,根据去B地参加夏令营活动人数占总人数的40%,进而得出方程求出即可; (2)根据已知列表得出所有可能,进而利用概率公式求出即可. 解答: 解:(1)设去B地的人数为x, 则由题意有:; 解得:x=40. ∴去B地的人数为40人. (2)列表: 4 (1,4) (2,4) (3,4) (4,4) 3 (1,3) (2,3) (3,3) (4,3) 2 (1,2) (2,2) (3,2) (4,2) 1 (1,1) (2,1) (3,1) (4,1) 1 2 3 4 ∴姐姐能参加的概率弟弟能参加的概率为∵∴不公平. <, , , 数学试卷
点评: 此题主要考查了条形统计图以及列表法求出概率和游戏公平性等知识,正确列举出所有可能是解题关键. (2019?宜昌)2019~2019NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( ) ..A.科比罚球投篮2次,一定全部命中 B. 科比罚球投篮2次,不一定全部命中. C. 科比罚球投篮1次命中的可能性较大 D. 科比罚球投篮1次,不命中的可能性较小
2019?张家界)下列事件是必然事件的是( D) A.有两边及一角对应相等的两个三角形全等 B. 方程x2?x?1?0有两个不等实根
C. 面积之比为1︰4的两个相似三角形的周长之比也是1︰4
D. 圆的切线垂直于过切点的半径
(2019?张家界)从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是
(2019?晋江)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、?2、?3、4,
它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片. (1)求小芳抽到负数的概率;
(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率. 解:(1)P (小芳抽到负数)=(2)方法一:画树状图如下:
1 . 31;……………………………………………………4分 2片小芳:
1-2-34片小明:
-2-341-341-241-2-3由图可知:共有12种机会均等的结果,其中两人均抽到负数的有2种;…………………8
分
∴P(两人均抽到负数)?分
方法二:列举所有等可能的结果,列表法如下:
小明
小芳
1 -2 -3 4
(-2,1) (-3,1) (4,1)
(-3,-2) (4,-2)
(4,-3)
(1,-2)
1
-2
-3 (1,-3) (-2,-3)
4 (1,4) (-2,4) (-3,4)
21? ……………………………………………………………9126数学试卷
由列表可知:共有12种机会均等的结果,其中两人均抽到负数的有2种;………………8分
∴P(两人均抽到负数)?分
(2019?龙岩)若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是A
A.1 B.1 C.2 D.5
3632(2019?莆田)经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为 考点: 可能性的大小. 分析: 列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可. 解答: 解:画树状图得出: .
21?.……………………………………………………………9126 ∴一共有4种情况,两辆汽车经过这个十字路口全部继续直行的有一种, ∴两辆汽车经过这个十字路口全部继续直行的概率是:. 故答案为:. 点评: 本题主要考查用列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比. (2019?三明)三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.
(1)从中任意抽取一张卡片,该卡片上数字是5的概率为
;
(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由. 考点: 游戏公平性;概率公式;列表法与树状图法. 分析: (1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案; 数学试卷
(2)根据题意列出图表,再根据概率公式求出和为7和和为10的概率,即可得出游戏的公平性. 解答: 解:(1)∵三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同, ∴从中任意抽取一张卡片,该卡片上数字是5的概率为:; 故答案为:; (2)根据题意列表如下: 2 5 5 2 (2,2)(4) (2,5)(7) (2,5)(7) 5 (5,2)(7) (5,5)(10) (5,5)(10) 5 (5,2)(7) (5,5)(10) (5,5)(10) ∵共有9种可能的结果,其中数字和为7的共有4种,数字和为10的共有4种, ∴P(数字和为7)=,P(数字和为10)=, ∴P(数字和为7)=P(数字和为10), ∴游戏对双方公平. 点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比. (2019?漳州)下列事件中是必然事件的是 A.一个直角三角形的两个锐角分别是40°和60° B.抛掷一枚硬币,落地后正面朝上 C.当x是实数时,x2≥0
D.长为5cm、5cm、11cm的三条线段能围成一个三角形
(2019?漳州)漳州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项。 (1)每位考生有 选择方案;
(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率。(友情提醒:各种方案用A、B、C、…或①、②、③、…等符号来代表可简化解答过程) (2019?厦门)掷一个质地均匀的正方体骰子,当骰子停止后,朝上 一面的点数为5的概率是 C 11
A.1. B.. C.. D.0.
56
(2019?厦门)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同).投掷这个正12面体一次,记事件A为 “向
上一面的数字是2或3的整数倍”,记事件B为 “向上一面的数字是3的整数倍”,请你1
判断等式“P(A)=+P(B)”是否成立,并说明理由.
2解: 不成立
数学试卷
82
∵ P(A)==,
12341
又∵P(B) ==,
1231152
而+=≠. 2363
∴ 等式不成立.
(2019?长春)甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率.
结果 甲 或 乙 白 红 红 白
白 ((红(白,白) ,白) 红,白) ((红(白,白) ,白) 红,白) ((红(红 白,红) ,红) 红,红)
4. 9(2019?吉林省)在一个不透明的箱子中装有3个小球,分别标有A,B,C.这3个小球除所标字母外,其它都相同.从箱子中随机地摸出一个小球,然后放回;再随机地摸出一个小球.请你用画树形图(或列表)的方法,求两次摸出的小球所标字不同的概率
(2019?白银)为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来. (1)运用列表或画树状图求甲得1分的概率; (2)请你用所学的知识说明这个游戏是否公平? 考点: 游戏公平性;列表法与树状图法. 分析: (1)首先根据题意列出表格或画出树状图,然后求得所有等可能的结果与甲得1分的情况,然后利用概率公式求解即可求得答案; (2)由(1)求得乙的得分,比较概率不相等,即可得这个游戏是不公平. 解答: 解:(1)列表得: ∴P(两人摸出的球颜色相同)=
数学试卷
1 2 3 4 画树状图得: 1 ﹣ 1分 1分 0分 2 1分 ﹣ 1分 0分 3 1分 1分 ﹣ 0分 4 0分 0分 0分 ﹣ ∴P(甲得1分)== (2)不公平. ∵P(乙得1分)= ∴P(甲得1分)≠P(乙得1分), ∴不公平. 点评: 本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平. (2019?宁夏)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: (1)求m的值;
(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.
考点: 频数(率)分布直方图;列表法与树状图法. 分析: (1)根据班级总人数有50名学生以及利用条形图得出m的值即可; (2)根据在6~10小时的5名学生中随机选取2人,利用树形图求出概率即可. 解答: 解:(1)m=50﹣6﹣25﹣3﹣2=14; 数学试卷
(2)记6~8小时的3名学生为,8~10小时的两名学生为, P(至少1人时间在8~10小时)=. 点评: 此题主要考查了频数分布表以及树状图法求概率,正确画出树状图是解题关键. .(2019?苏州)任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为 ▲
(2019?苏州)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全..
等但面积相等的三角形是 ▲ (只需要填一个三角形); .
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).
(2019?宿迁)妈妈买回6个粽子,其中1个花生馅,2个肉馅,3个枣馅.从外表看,6个粽子完全一样,女儿有事先吃.
(1)若女儿只吃一个粽子,则她吃到肉馅的概率是 ▲ ; (2)若女儿只吃两个粽子,求她吃到的两个都是肉馅的概率.
(2019?常州)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中随机摸出一个球是白球的概率是多少?
(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图. 考点: 列表法与树状图法. 专题: 图表型. 分析: (1)根据概率的意义列式即可; 数学试卷
(2)画出树状图,然后根据概率公式列式计算即可得解. 解答: 解:(1)∵共有3个球,2个白球, ∴随机摸出一个球是白球的概率为; (2)根据题意画出树状图如下: 一共有6种等可能的情况,两次摸出的球都是白球的情况有2种, 所以,P(两次摸出的球都是白球)==. 点评: 本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. (2019?淮安)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.
(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是
;
(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程) 考点: 列表法与树状图法. 分析: (1)直接根据概率公式解答即可; (2)首先画出树状图,可以直观的得到共有6种情况,其中是5的倍数的有两种情况,进而算出概率即可. 解答: 解:(1)任意摸一只球,所标数字是奇数的概率是:; (2)如图所示:共有6种情况,其中是5的倍数的有25,35两种情况, 概率为:=. 点评: 本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. 数学试卷
(2019?南京)(1) 一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都
相同。求下列事件的概率:
? 搅匀后从中任意摸出1个球,恰好是红球;
? 搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1
个球,两次都是红球;
(2019?南京)某次考试有6道选择题,每道题所给出的4个选项中,恰有一项是正确的,如果小明
从每道题的4个选项中随机地选择1个,那么他6道选择题全部选择正确的概率是 (A)
1 1 6 1 6 3 6
(B) () (C) 1?() (D) 1?( 4 4 4 4 )
.
(2019?苏州)任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为
考点: 概率公式. 分析: 根据掷得面朝上的点数大于4情况有2种,进而求出概率即可. 解答: 解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种, 掷得面朝上的点数大于4的概率是:=. 故答案为:. 点评: 此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. (2019?苏州)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是 △DFG或△DHF (只需要填一个三角形)
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).
考点: 作图—应用与设计作图;列表法与树状图法. 分析: (1)根据格点之间的距离得出△ABC的面积进而得出三角形中与△ABC不全等但面数学试卷
积相等的三角形; (2)利用树状图得出所有的结果,进而根据概率公式求出即可. 解答: 解:(1)∵△ABC的面积为:×3×4=6, 只有△DFG或△DHF的面积也为6且不与△ABC全等, ∴与△ABC不全等但面积相等的三角形是:△DFG或△DHF; (2)画树状图得出: 由树状图可知共有6种可能的结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF, 故所画三角形与△ABC面积相等的概率P==, 答:所画三角形与△ABC面积相等的概率为. 故答案为:△DFG或△DHF. 点评: 此题主要考查了三角形面积求法以及树状图法求概率,根据已知得出三角形面积是解题关键. (2019?泰州)事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、 P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是( )
A.P(C)
【答案】:B. (2019?泰州)保障房建设是民心工程.某市从2008年开始加快保障房建设进程.现统计了该市2008年到2019年这5年新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图. 某市2008-2012年新建保障房套数年增某市2008-2012年新建保障房套数条形
长率折线统计图 统计图 增长率套数
30701200 250020% 75080060015% 60010% 4005 0
00 20082009201020112012年份20082009201020112012年份
(1)小丽看了统计图后说:“该市2011年新建保障房的套数比2010年少了.”你认为小丽的说法正确吗?请说明理由;
数学试卷
(2)请补全条形统计图;
(3)求这5年平均每年新建保障房的套数.
解: (1) 小丽的说法不正确.
某市2008-2012年新建保障房套数
理由:由折线统计图可知,该市2011年新建保障房的套数
条形统计图
比2010年增加了20%.2010年新建保障房的套数为750套; 套数2011年新建保障房的套数为750×(1+20%)=900套.
11701200所以小丽的说法不正确.
1000900 (2) 如图.
750800 600500 600
400 200 020082009201020112012年份
(3)由统计图可知:2008年新建保障房的套数为600÷(1+20%)=500套 ∴这5年平均每年新建保障房的套数
500?600?750?900?1170?784套
520.(8分)(2019?泰州)从甲、乙、丙、丁4名选手中随机抽取两名选手参加乒乓球比赛.请用画树状图或列表的方法列出所有可能的结果,并求甲、乙两名选手恰好被抽到的概率. 【答案】:
解:解法一:树状图法. 开始
丙 乙 丁 甲
甲 乙 丁 甲 丙 丁 甲 乙 丙 乙 丙 丁
(甲乙)( 甲丙)( 甲丁) (甲乙)(乙丙) (乙丁) (丙甲)(丙乙) (丙丁) (丁乙)(丁乙) (丁丙) 结果:
由树状图知:总结果有12个,结果为“甲乙”的有2个. ∴P(甲、乙两名选手恰好被抽到)=
解法二:列表法. 21? 126 甲 乙 丙 丁 甲 甲乙 甲丙 甲丁 乙 乙甲 乙丙 乙丁 丙 丙甲 丙乙 丙丁 丁 丁甲 丁乙 丁丙 由表格知:总结果有12个,结果为“甲乙”的有2个.
数学试卷
∴P(甲、乙两名选手恰好被抽到)=
21? 126(2019?南通)质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,
投掷这个骰子一次,则向上一面的数字是偶数的概率为 ▲ .
(2019?南通)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x、y表示这两个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍. (1)求x+y的值;
(2)求小沈一次拨对小陈手机号码的概率.
(2019?南宁)甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是( ) 1 A.B. C. D. 考点: 概率公式. 分析: 由设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案. 解答: 解:∵设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况, ∴甲抽到1号跑道的概率是:. 故选D. 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. (2019?钦州)(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:
①所调查的七年级50名学生在这个月内做好事次数的平均数是 4.4 ,众数是 5 ,极差是 6 :
②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球. ①用“树状图法”或“列表法”表示所有可能出现的结果; ②取出的两个小球上所写数字之和是偶数的概率是多少?
数学试卷
考点: 列表法与树状图法;用样本估计总体;条形统计图. 分析: (1)①根据平均数、众数、极差定义分别进行计算即可;②根据样本估计总体的方法,用800乘以调查的学生做好事不少于4次的人数所占百分比即可; (2)①根据题意画出树状图可直观的得到所有可能出现的结果;②根据①所列树状图,找出符合条件的情况,再利用概率公式进行计算即可. 解答: 解:(1)①平均数;(2×5+3×6+4×13+5×16+6×10)÷50=4.4; 众数:5次; 极差:6﹣2=4; ②做好事不少于4次的人数:800× (2)①如图所示: =624; ②一共出现6种情况,其中和为偶数的有3种情况,故概率为=. 点评: 此题主要考查了条形统计图、众数、平均数、极差、样本估计总体、以及画树状图和概率,关键是能从条形统计图中得到正确信息,正确画出树状图. 2019?玉林)某小区为了促进生活垃圾的分类处理,将生活垃圾分为:可回垃圾、厨余垃圾、其他垃圾三类,分别记为A,B,C:并且设置了相应的垃圾箱,依次记为a,b,c. (1)若将三类垃圾随机投入三个垃圾箱,请你用树形图的方法求垃圾投放正确的概率: (2)为了调查小区垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总重500kg生活垃圾,数据如下(单位:) a b c A 40 15 10 B 60 250 40 C 15 15 55 试估计“厨余垃圾”投放正确的概率. 考点: 列表法与树状图法;利用频率估计概率. 分析: (1)根据题意画出树状图,由树状图可知总数为9,投放正确有3种,进而求出垃圾投放正确的概率; (2)由题意和概率的定义易得所求概率. 解答: 解:(1)如图所示:共有9种情况,其中投放正确的有3种情况,故垃圾投放正确的概率:=; (2)“厨余垃圾”投放正确的概率为:=. 数学试卷
点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果.用到的知识点为:概率=所求情况数:总情况数. (2019?包头)下列事件中是必然事件的是( ) A.在一个等式两边同时除以同一个数,结果仍为等式 两个相似图形一定是位似图形 B. 平移后的图形与原来图形对应线段相等 C. D.随机抛掷一枚质地均匀的硬币,落地后正面一定朝上 考点: 随机事件. 分析: 必然事件就是一定发生的事件,即发生的概率是1的事件. 解答: 解:A、当除数为0时,结论不成立,是随机事件; B、两个相似图形不一定是位似图形,是随机事件; C、平移后的图形与原来图形对应线段相等,是必然事件; D、随机抛出一枚质地均匀的硬币,落地后正面可能朝上,是随机事件. 故选C. 点评: 本题考查了必然事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为: 必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. (2019?包头)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.
(1)试用列表或画树形图的方法,求甲获胜的概率;
(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.
考点: 游戏公平性;列表法与树状图法. 分析: (1)根据题意列出图表,得出数字之和共有12种结果,其中“和是3的倍数”的结果有4种,再根据概率公式求出甲获胜的概率; (2)根据图表(1)得出)“和是4的倍数”的结果有3种,根据概率公式求出乙的概率,再与甲的概率进行比较,得出游戏是否公平. 数学试卷
解答: 解:(1)列表如下: ∵数字之和共有12种结果,其中“和是3的倍数”的结果有4种, ∴P(甲)==; (2)∵“和是4的倍数”的结果有3种, ∴P(乙)=∵=; ,即P(甲)≠P(乙), ∴这个游戏规则对甲、乙双方不公平. 点评: 此题考查了游戏的公平性,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平,用到的知识点为:概率=所求情况数与总情况数之比. (2019?呼和浩特)下列说法正确的是( ) A.“打开电视剧,正在播足球赛”是必然事件 甲组数据的方差B.=0.24,乙组数据的方差=0.03,则乙组数据比甲组数据稳定 一组数据2,4,5,5,3,6的众数和中位数都是5 C. D.“掷一枚硬币正面朝上的概率是”表示每抛硬币2次就有1次正面朝上 考点: 方差;中位数;众数;随机事件;概率的意义. 分析: 根据方差、中位数、众数、随机事件和概率的意义分别对每一项进行分析即可. 解答: 解:A、“打开电视剧,正在播足球赛”是随机事件,故本选项错误; B、甲组数据的方差=0.24,乙组数据的方差=0.03,则乙组数据比甲组数据稳定,故本选项正确; C、一组数据2,4,5,5,3,6的众数是5,中位数是4.5,故本选项错误; D、“掷一枚硬币正面朝上的概率是”表示每抛硬币2次可能有1次正面朝上,故本选项错误; 故选B. 点评: 此题考查了方差、中位数、众数、随机事件和概率的意义,解题的关键是熟练掌握方差、中位数、众数、随机事件和概率的定义和计算方法. (2019?呼和浩特)从1到9这九个自然数中任取一个,是偶数的概率是( ) A.B. C. D. 数学试卷
考点: 概率公式. 分析: 先从1~9这九个自然数中找出是偶数的有2、4、6、8共4个,然后根据概率公式求解即可. 解答: 解:1~9这九个自然数中,是偶数的数有:2、4、6、8,共4个, ∴从1~9这九个自然数中任取一个,是偶数的概率是:. 故选:B. 点评: 本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比. (2019?毕节)甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜。若指针落在分界线上,则需要重新转动转盘。
(1)用画树状图或列表的方法,求甲获胜的概率;
(2)这个游戏对甲、乙双方公平吗?请判断并说明理由。
开始解:画树状图如下:
转盘A: 1 3 3
3 2 1 转盘B: 2 3 4 2 3 4
4
数字和: 3 4 5 5 6 7
A盘 B盘 由上图可知,所有出现的可能情况有3、4、5、5、6、7六种。 (第22题图) 所以,P(甲获胜)=由于
2142=;P(乙获胜)==; 636312<,即P(甲获胜)<P(乙获胜),因此这个游戏对甲、乙双方不公平。 33(2019?遵义)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( )
A. B. C. D. 考点: 概率公式;利用轴对称设计图案. 分析: 由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案. 解答: 解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况, 数学试卷
∴使图中黑色部分的图形构成一个轴对称图形的概率是:=. 故选A. 点评: 此题考查了概率公式的应用与轴对称.注意概率=所求情况数与总情况数之比. (2019?遵义)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为. (1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率. 考点: 列表法与树状图法;概率公式. 分析: (1)首先设口袋中黄球的个数为x个,根据题意得:=,解此方程即可求得答案; (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案; (3)由若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;直接利用概率公式求解即可求得答案. 解答: 解:(1)设口袋中黄球的个数为x个, 根据题意得:=, 解得:x=1, 经检验:x=1是原分式方程的解; ∴口袋中黄球的个数为1个; (2)画树状图得: ∵共有12种等可能的结果,两次摸出都是红球的有2种情况, ∴两次摸出都是红球的概率为:=; (3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球, ∴乙同学已经得了7分, ∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果; 数学试卷
∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率为:. 点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. (2019?北京)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,
3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.
1234 B. C. D. 555535
答案:C
解析:大于2的有3、4、5,共3个,故所求概率为
(2019?天津)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是
.
考点: 列表法与树状图法. 专题: 计算题. 分析: 先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可. 解答: 解:如图, 随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种, 所有两次摸出的小球标号的和等于4的概率=故答案为. . 点评: 本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=. (2019山东滨州,9,3分)若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为 A.
1311 B. C. D. 2434【答案】 A.
数学试卷
(2019? 德州)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n,则算过关;否则不算过关,则能过第二关的概率是( ) A.B. C. D. 考点: 列表法与树状图法. 分析: 由在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于n,则算过关;可得能过第二关的抛掷所出现的点数之和需要大于5,然后根据题意列出表格,由表格求得所有等可能的结果与能过第二关的情况,再利用概率公式求解即可求得答案. 解答: 解:∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于n,则算过关; ∴能过第二关的抛掷所出现的点数之和需要大于5, 列表得: 6 7 8 9 10 5 4 3 2 1 6 5 4 3 2 1 7 6 5 4 3 2 =. 8 7 6 5 4 3 9 8 7 6 5 4 222
11 10 9 8 7 6 5 12 11 10 9 8 7 6 ∵共有36种等可能的结果,能过第二关的有26种情况, ∴能过第二关的概率是:故选A. 点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. (2019? 东营)2019年“五·一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是( A ) A.
13 B.
16 C.
19 D.
1 4(2019? 东营)东营市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创城”活动的宣传,校学生会就本校学生对东营“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如下图所示的两幅不完整的统计图(A:59分及以下;B:60—69分;C:70—79分;D:80—89分;E:90—100分).请你根据图中提供的信息解答以下问题:
数学试卷
(2019菏泽)某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为A,B,C.
(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率; (2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总1 000吨生活垃圾,数据统计如下(单位:吨):
a b c A 400 30 20 B 100 240 20 C 100 30 60
试估计“厨余垃圾”投放正确的概率. 考点:列表法与树状图法. 分析:(1)根据题意画出树状图,由树状图可知总数为9,投放正确有3种,进而求出垃圾投放正确的概率;
(2)由题意和概率的定义易得所求概率. 解答:解:(1)三类垃圾随机投入三类垃圾箱的树状图如下:
由树状图可知垃圾投放正确的概率为(2)“厨余垃圾”投放正确的概率为
;
.
点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比
(2019? 济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于否则不算过关.则能过第二关的概率是 A.
52n,则算过关;413511 B. C. D. 181849数学试卷
(1)求该校共有多少名学生; (2)将条形统计图补充完整;
(3)在扇形统计图中,计算出“60—69分”部分所对应的圆心角的度数; (4)从该校中任选一名学生,其测试成绩为“90—100分”的概率是多少?
解:(1)该学校的学生人数是:300?3000(人).………………………2分 (2)条形统计图如图所示.………………………………………………………4分 (3)在扇形统计图中,“60—69分”部分所对应的圆心角的度数是:
200360??(?100%)?72?………………………………………………………6分
1000 (4)从该校中任选一名学生,其测试成绩为“90—100分”的概率是:
501=………………………………………………………………8分 100020
人数 400 350 300 250 200 150 100 50 A B C D E 成绩
(第19题答案图)
(2019济宁)甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是 .
考点:列表法与树状图法.
分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙二人相邻的情况,再利用概率公式求解即可求得答案.
解答:解:画树状图得:
∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,
数学试卷
∴甲、乙二人相邻的概率是:=. 故答案为:.
点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
(2019聊城)下列事件:①在足球赛中,弱队战胜强队. ②抛掷1枚硬币,硬币落地时正面朝上. ③任取两个正整数,其和大于1
④长为3cm,5cm,9cm的三条线段能围成一个三角形. 其中确定事件有( )
A.1个 B.2个 C.3个 D.4个 考点:随机事件.
分析:根据随机事件的定义对各选项进行逐一分析即可.
解答:解:A.在足球赛中,弱队战胜强队是随机事件,故本选项正确; B.抛掷1枚硬币,硬币落地时正面朝上是随机事件,故本选项正确; C.任取两个正整数,其和大于1是必然事件,故本选项错误;
D.长为3cm,5cm,9cm的三条线段能围成一个三角形是不可能事件,故本选项错误. 故选B.
点评:本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(2019聊城)某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中个抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是 .
考点:列表法与树状图法. 分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与首场比赛出场的两个队都是县区学校队的情况,再利用概率公式求解即可求得答案. 解答:解:画树状图得:
∵共有16种等可能的结果,首场比赛出场的两个队都是县区学校队的有6种情况, ∴首场比赛出场的两个队都是县区学校队的概率是:故答案为:.
点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
=.
数学试卷
(2019?青岛)一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有( )个 A、45 B、48 C、50 D、55 答案:A
解析:摸到白球的概率为P=
101?,设口袋里共有n个球,则 1001051?,得n=50,所以,红球数为:50-5=45,选A。 n10(2019?青岛)小明和小刚做纸牌游戏,如图,两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各抽取一张,称为一次游戏。当两张牌的牌面数字之和为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由
解析:
(2019? 日照)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为
1;妈妈3从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为
2. 5(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?
(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)
解析:(1)设爸爸买的火腿粽子和豆沙粽子分别为x只、y只, ……1分
x1??,??x?y3根据题意得:? …………………………………4分
x?32??.?x?3?y?75?数学试卷
解得: ??x?5, 经检验符合题意,
?y?10.所以爸爸买了火腿粽子5只、豆沙粽子10只. ……………6分
(2)由题可知,盒中剩余的火腿粽子和豆沙粽子分别为2只、3只,我们不妨把两只火腿粽子记为a1、a2;3只豆沙粽子记为b1、b2、b3,则可列出表格如下:
a1 a2 b1 b2 b3
…………8分
∴P(A)?a1 a2 a1 b1 a1 b2 a1 b3 a1 a2 a1 a2 b1a2 b2a2 b3a2 b1 a1b1 a2 b1 b2b1 b3b1 b2 a1b2 a2 b2 b1 b2 b3b2 b3 a1b3 a2 b3 b1 b3 b2 b3 63? …………………10分 105
(2019泰安)有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( ) A.
B.
C.
D.
考点:列表法与树状图法;点的坐标. 专题:图表型.
分析:画出树状图,然后确定出在第二象限的点的个数,再根据概率公式列式进行计算即可得解.
解答:解:根据题意,画出树状图如下:
一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个, 所以,P==.
故选B.
点评:本题考查了列表法与树状图法,第二象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.
(2019?威海)一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A.B. C. D. 数学试卷
考点: 列表法与树状图法 专题: 计算题. 分析: 列表得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率. 解答: 解:列表如下: 红 红 红 绿 绿 红 ﹣﹣﹣ (红,红) (红,红) (绿,红) (绿,绿) 红 (红,红) ﹣﹣﹣ (红,红) (绿,红) (绿,红) 红 (红,红) (红,红) ﹣﹣﹣ (绿,红) (绿,红) 绿 (红,绿) (红,绿) (红,绿) ﹣﹣﹣ (绿,绿) 绿 (红,绿) (红,绿) (红,绿) (绿,绿) ﹣﹣﹣ 得到所有可能的情况数为20种,其中两次都为红球的情况有6种, 则P两次红==. 故选A 点评: 此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. (2019? 枣庄)从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是 .
(2019? 枣庄)“六·一”前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品.以下是根据抽查结果绘制出的不完整的统计表和扇形图:
请根据上述统计表和扇形图提供的信息,完成下列问题: (1)补全上述统计表和扇形图;
(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?
(2019? 淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则
三只雏鸟中恰有两只雌鸟的概率是
1352(A) (B) (C) (D)
63882019?
淄
博
)
请
写
出
一
个
概
率
小
于
12第21题图
类 别
儿童玩具90
童车
童装
抽查件数
儿童玩具%童车
25%
童装
%
(
的随机事
件: .
数学试卷
(2019杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片 (1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率; (2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;
(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.
考点:游戏公平性. 分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;
(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;
(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止. 解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),
∴是20倍数或者能整除20的数有7个,
则取到的卡片上序号是20的倍数或能整除20的概率为:
;
(2)不公平,
∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%, 而很明显抽到其他序号学生概率不为100%. ∴不公平;
(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止. (为保证每个数字每次被抽到的概率都是
)
点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
(2019?湖州)一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( ) A.B. C. D. 考点: 概率公式. 分析: 让红球的个数除以球的总个数即为所求的概率. 解答: 解:因为一共有6个球,红球有2个, 所以从布袋里任意摸出1个球,摸到红球的概率为: =. 故选D. 点评: 本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比. .(2019? 嘉兴)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量
22与平均数分别相同,若方差S甲=0.1,S乙=0.2,则甲组数据比乙组数据稳定;④“掷
一枚硬币,正面朝上”是必然事件.正确说法的序号是( ▲ )
数学试卷
(A)① (B)② (C)③ (D)④
(2019? 嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为 ▲ .
(2019? 丽水)合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,
C,D随机坐到其它三个座位上,则学生B坐在2号座位的概率是__________
(2019?宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( ) A.B. C. D. 考点: 概率公式. 分析: 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 解答: 解:解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个, 从中随机摸出一个,则摸到红球的概率是=. 故选:D. 点评: 本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. (2019? 衢州)小芳同学有两根长度为4cm、10cm的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是 ▲ .
(2019?绍兴)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为( ) A.B. C. D. 考点: 概率公式. 分析: 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案. 解答: 解:根据题意可得:袋子中有3个白球,2个黄球和1个红球,共6个, 从袋子中随机摸出一个球,它是黄球的概率2÷6=. 数学试卷
故选:B. 点评: 此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. (2019? 台州)在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4,从袋中随机地摸取一个小球后然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是
(2019?温州)一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都
相同。
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一
个球是黄球的概率不小于
1,问至少取出了多少个黑球? 3(2019?广州)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:
11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A级的频率;
(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数; (3) 从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条
数”都是3的概率.
(2019?深圳)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同。从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是 A、
451 B、 C、 992 D、
2 3
(2019?珠海)把分别标有数字2、3、4、5的四个小球放入A袋内,把分别标有数字、、、、的五个小球放入B袋内,所有小球的形状、大小、质地完全相同,A、B两个袋子不透明、
(1)小明分别从A、B两个袋子中各摸出一个小球,求这两个小球上的数字互为倒数的概率;
(2)当B袋中标有的小球上的数字变为 概率为.
、、、 时(填写所有结果),(1)中的
数学试卷
考点: 列表法与树状图法. 分析: (1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球上的数字互为倒数的情况,再利用概率公式即可求得答案; (2)由概率为,可得这两个小球上的数字互为倒数的有5种情况,继而可求得答案. 解答: 解:(1)画树状图得: ∵共有20种等可能的结果,这两个小球上的数字互为倒数的有4种情况, ∴这两个小球上的数字互为倒数的概率为: (2)∵当B袋中标有的小球上的数字变为、、、时(填写所有结果), ∴这两个小球上的数字互为倒数的有5种情况, ∴这两个小球上的数字互为倒数的概率为:故答案为:、、、. 点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. (2019?哈尔滨)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ). (A)
=. =; 1111 (B) (C) (D) 16842(2019?牡丹江)小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是( ) A.B. C. D. 考点: 概率公式. 分析: 在十张数字卡片中,恰好能被4整除的有4,8,共2个;求抽到的数能被4整除的可能性个数,进而得出答案. 解答: 解:1﹣10中的数有:4、8,共2个,就有10张卡片, 2÷10=, 数学试卷
答:从中任意摸一张,那么恰好能被4整除的概率是; 故选:C. 点评: 此题主要考查了概率公式,概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. (2019?河南)现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4. 把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数 字之积为负数的概率是_________. (2019?河南)从2019年1月7日起,中国中东部大部分地区持续出现雾霾天气. 某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表. 组别 观点 大气气压低,空气不流动 地面灰尘大,空气湿度低 汽车尾部排放 工厂造成污染 其他 频数(人数) 80 A B C D E m n 120 60 请根据图表中提供的信息解答下列问题;
(1)填空:m=________,n=_______,扇形统计图中E组所占的百分比为_________%. (2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?
(2019兰州)“兰州市明天降水概率是30%”,对此消息下列说法中正确的是( ) A.兰州市明天将有30%的地区降水 B.兰州市明天将有30%的时间降水 C.兰州市明天降水的可能性较小 D.兰州市明天肯定不降水 考点:概率的意义.
分析:根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.
解答:解:根据概率表示某事情发生的可能性的大小,分析可得:A.兰州市明天降水概率是30%,并不是有30%的地区降水,故选项错误; B.兰州市明天将有30%的时间降水,故选项错误;
C.兰州市明天降水概率是30%,即可能性比较小,故选项正确; D.兰州市明天降水概率是30%,明天有可能降水,故选项错误. 故选C. 点评:本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.
数学试卷
(2019兰州)某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是 . 考点:列表法与树状图法. 分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出一男一女的情况,再利用概率公式求解即可求得答案. 解答:解:画树状图得:
∵共有20种等可能的结果,选出一男一女的有12种情况, ∴选出一男一女的概率是:故答案为:.
点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
(2019?黔西南州)“五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,图9是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:
(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(图9). (2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中
车辆数量随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),
那么员工小胡抽到去甲地的车票的概率是多少?
40(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、430的四个球中摸出一球(球除数字不同外完全相同),并放回让另
20一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李。”试用列表法或画树状图的方法分析这个规则对双方是否公
10平?
甲=.
(2019?乌鲁木齐)在一个不透明的口袋中有颜色不同的红、白两
乙图9丙丁车辆种类种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为,则n= 9 . 考点: 概率公式. 分析: 根据题意,由概率公式可得方程:解答: 解:根据题意得: =,解此方程即可求得答案. 数学试卷
=, 解得:n=9, 经检验:x=9是原分式方程的解. 故答案为:9. 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. (2019?江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件. (1)下列事件是必然事件的是( ). A.乙抽到一件礼物
B.乙恰好抽到自己带来的礼物 C.乙没有抽到自己带来的礼物 D.只有乙抽到自己带来的礼物
(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率. 【答案】(1)A .
(2)依题意画树状图如下:
从上图可知,所有等可能结果共有6种,其中第4、5种结果符合,∴P(A)=
21= . 63【考点解剖】 本题为概率题,考查了对“随机事件”、“必然事件”两个概念的理解,画树形图或表格列举所有等可能结果的方法.
【解题思路】 (1)是选择题,根据必然事件的定义可知选A;(2)三个人抽取三件礼物,恰好每人一件,所有可能结果如上图所示为6种,其中只有第4、5种结果符合,∴P(A)=
21= ;也可以用直接列举法:甲从三个礼物中抽到的礼物恰好不是自己的只有两种,631 . 3要么是乙的要么是丙的,若甲抽到乙的,乙必须抽到丙的才符合题意;若甲抽到的是丙的,乙必须抽到甲的才符合题意,∴P(A) =
【解答过程】 略.
【方法规律】 要正确理解题意,画树形图列举所有可能结果,本质就是一种分类,首先要明确分类的对象,再要确定分类的标准和顺序,实现不重不漏.
【关键词】 必然事件 概率 抽取礼物
(2019,河北)如图10,A是正方体小木块(质地均匀)的一顶点,将木块 随机投掷在水平桌面上,则A与桌面接触的概率是________.
(2019?安徽)如图,有三条绳子穿过一片木板,姐妹两人分别站在木板的左、右两边,
各选该边的一条绳子。若每边每条绳子被选中的机会相等,则两人选到同一条绳子的机率
数学试卷
为( B ) A.
1111 B. C. D.
3926(2019?上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为___________.
(2019?毕节地区)甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3
份,并在每一份内标有数 字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数 时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.
(1)用画树状图或列表的方法,求甲获胜的概率;
(2)这个游戏对甲、乙双方公平吗?请判断并说明理由. 考点: 游戏公平性;列表法与树状图法. 分析: (1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之和为偶数情况,再利用概率公式即可求得答案; (2)分别求得甲、乙两人获胜的概率,比较大小,即可得这个游戏规则对甲、乙双方是否公平. 解答: 解:(1)画树状图得: ∵共有6种等可能的结果,两数之和为偶数的有2种情况; ∴甲获胜的概率为: =; (2)不公平. 理由:∵数字之和为奇数的有4种情况, ∴P(乙获胜)==, ∴P(甲)≠P(乙), ∴这个游戏规则对甲、乙双方不公平. 点评: 本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平. (2019?昆明)有三张正面分别标有数字:-1、1、2的卡片,它们除数字不同外其余全部
数学试卷
相同,现将它们背面朝上,洗匀后随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字。
(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出的卡片上的数字的所有结果;
(2)将第一次抽出的数字作为点的横坐标?,第二次抽出的数字作为点的纵坐标?,求点(?,?)落在双曲线?=
2上的概率。 x .
(2019?邵阳)端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是 考点: 概率公式. 分析: 共有8个粽子,火腿粽子有5个,根据概率的公式进行计算即可. 解答: 解:∵共有8个粽子,火腿粽子有5个, ∴从中任取1个,是火腿粽子的概率是, 故答案为: 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. (2019?柳州)一个袋中有3个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的条件下,随机摸出一个红球的概率是
,则袋中有 7 个白球.
考点: 概率公式. 分析: 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,求出即可. 解答: 解:设白球x个,根据题意可得:=, 解得:x=7, 故袋中有7个白球. 故答案为:7. 点评: 本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. (2019?柳州)韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.
(1)请用列表法或树状图表示出所有可能出现的游戏结果; (2)求韦玲胜出的概率.
数学试卷
考点: 列表法与树状图法. 分析: (1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果; (2)由树状图可得一次游戏中两人出同种手势的有3种情况,韦玲获胜的有3种情况,然后利用概率公式求解即可求得答案. 解答: 解:(1)画树状图得: 则有9种等可能的结果; (2)∵韦玲胜出的可能性有3种, 故韦玲胜出的概率为:. 点评: 本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. (2019?铜仁)一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )
A.
1112 B. C. D. 3263(2019?铜仁)某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令
营活动,学
校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请 你根据统计图回答下列问题:
(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.
(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、 质地完全相同),那么张明抽到前往上海的车票的概率是多少?
解:(1)设去天津的车票数为x张………………………………1分
x?30%…………………………3分 70?x解之得x=30…………………………………………4分
数学试卷
补全统计图如右图所示………………6分
(2)车票的总数为100张,去上海的车票为40张…………………………7分
所求概率=
40100?25………………………………9分 答:张明抽到去上海的车票的概率是
25……………………10 (2019?临沂)如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( )
A. B. C. D. 考点: 列表法与树状图法;等腰三角形的判定. 分析: 根据题意画出树状图,进而得出以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形是等腰三角形的情况,求出概率即可. 解答: 解:∵以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形, ∴画树状图得: 共可以组成4个三角形, 所作三角形是等腰三角形只有:△OA1B1,△OA2B2, 所作三角形是等腰三角形的概率是:=. 故选:D. 点评: 此题主要考查了利用树状图求概率以及等腰三角形的判定等知识,利用树状图表示出所有可能是解题关键. (2019?茂名)下列事件中为必然事件的是( ) A、打开电视机,正在播放茂名新闻 B、早晨的太阳从东方升起 C、随机掷一枚硬币,落地后正面朝上 D、下雨后,天空出现彩虹
(2019?茂名)如图,四条直径把两个同心圆分成八等份,若往圆面投掷飞镖,则飞镖落在白色区域的概率是 .
数学试卷
(2019?茂名)在某校举行的“中国学生营养日”活动中,设计了抽奖环节:在一只不透明的箱子中有3个球,其中2个红球,1个白球,它们除颜色外均相同. (1)随机摸出一个球,恰好是红球就能中奖,则中奖的概率是多少?
(2)同时摸出两个球,都是红球 就能中特别奖,则中特别奖的概率是多少?(要求画树状图或列表求解)
(2019?大兴安岭)小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好 能被4整除的概率是 A.
(2019?红河)今年“五·一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金
额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.
(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率. 解:(1)列表法表示如下: 第2次 第1次 1 2 3 1 (2,1) (3,1) 2 (1,2) (3,2) 3 (1,3) (2,3) 4 (1,4) (2,4) (3,4) 1213 B. C. D. 105510数学试卷
4 或树形图:
(4,1) (4,2) (4,3) 开 始
1232413344123412
……………………………………………………………………4分
(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可
能性相等,其中有一个小球标号为“1”的有6种,
所以抽奖人员的获奖概率为p?
(2019?重庆B)为了贯彻落实国家关于增强青少年体质的计划,重庆市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒性状、大小相同),为了了解对学生奶口味的喜好情况,某初中学九年级(1)班张老师对全班同学进行了调查统计,制成了如下两幅不完整的统计图:
61?. ……………… 122
(1)该班五种口味的学生奶喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整;
(2)在进行调查统计的第二天,张老师为班上每位同学发放一盒学生奶.喜好B味的小明和
数学试卷
喜好C味的小刚等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有B味2盒,C味和D味各1盒,张老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小明和小刚喜好的学生奶的概率.
相关推荐: