第一范文网 - 专业文章范例文档资料分享平台

2019-2020学年河南省新乡市中考数学一模试卷(有标准答案)

来源:用户分享 时间:2025/7/27 1:15:36 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

...

∵AM⊥BC, ∴AM⊥DE, ∴AM平分线段DE, ∵DN=NE, ∴A、N、M共线,

∴∠NMH=∠MND=∠DHM=90°, ∴四边形MNDH时矩形, ∴MN=DH, ∴

=

=sin60°=.

故答案为

(2)如图2中,连接AM、AN.

∵△ABC,△ADE都是等边三角形,BM=MC,DN=NE, ∴AM⊥BC,AN⊥DE, ∴∴

=sin60°,=

=sin60°,

∵∠MAB=∠DAN=30°, ∴∠BAD=∠MAN, ∴△BAD∽△MAN, ∴

(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.

=

=sin60°=

...

...

∵AB=AC,AD=AE,BM=CM,DN=NE, ∴AM⊥BC,AN⊥DE, ∵∠BAC=∠DAE, ∴∠ABC=∠ADE, ∴sin∠ABM=sin∠ADN, ∴

=

∵∠BAM=BAC,∠DAN=∠DAE, ∴∠BAM=∠DAN, ∴∠BAD=∠MAN. ∴△BAD∽△MAN, ∴

=

=sin∠ABC,

∵∠BAC=∠DAE, ∴∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△BAD≌△CAE, ∴∠ABD=∠ACE, ∵BD⊥CE, ∴∠BHC=90°,

∴∠ACE+∠COH=90°,∵∠AOB=∠COH, ∴∠ABD+∠AOB=90°, ∴∠BAO=90°, ∵AB=AC, ∴∠ABC=45°, ∴

23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A

...

=sin45°=.

...

不重合),过点P作PD∥y轴,交AC于点D. (1)求该抛物线的函数关系式;

(2)当△ADP是直角三角形时,求点P的坐标;

(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

【考点】HF:二次函数综合题.

【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;

(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:

①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标; ②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标;

(3)P、B重合,E点在x轴上,这样A、P、E三点在x轴上,所以A、P、E、F为顶点不可能构成平行四边形,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.

【解答】解:(1)∵抛物线的顶点为Q(2,﹣1), ∴设抛物线的解析式为y=a(x﹣2)2﹣1, 将C(0,3)代入上式,得: 3=a(0﹣2)2﹣1,a=1;

∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;

(2)分两种情况:

①当点P1为直角顶点时,点P1与点B重合; 令y=0,得x2﹣4x+3=0,解得x1=1,x2=3; ∵点A在点B的右边, ∴B(1,0),A(3,0); ∴P1(1,0);

...

...

②当点A为△AP2D2的直角顶点时; ∵OA=OC,∠AOC=90°, ∴∠OAD2=45°;

当∠D2AP2=90°时,∠OAP2=45°, ∴AO平分∠D2AP2; 又∵P2D2∥y轴, ∴P2D2⊥AO,

∴P2、D2关于x轴对称;

设直线AC的函数关系式为y=kx+b(k≠0). 将A(3,0),C(0,3)代入上式得:

解得

∴y=﹣x+3;

设D2(x,﹣x+3),P2(x,x2﹣4x+3), 则有:(﹣x+3)+(x2﹣4x+3)=0, 即x﹣5x+6=0;

解得x1=2,x2=3(舍去);

∴当x=2时,y=x﹣4x+3=2﹣4×2+3=﹣1; ∴P2的坐标为P2(2,﹣1)(即为抛物线顶点). ∴P点坐标为P1(1,0),P2(2,﹣1);

(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形; 当点P的坐标为P2(2,﹣1)(即顶点Q)时, 平移直线AP交x轴于点E,交抛物线于F; ∵P(2,﹣1), ∴可设F(x,1); ∴x﹣4x+3=1, 解得x1=2﹣

,x2=2+

2

2

2

2

∴符合条件的F点有两个, 即F1(2﹣

,1),F2(2+

,1).

...

...

...

2019-2020学年河南省新乡市中考数学一模试卷(有标准答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5tqyd6lic17z7sh75m1a072ie1yhw200myt_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top