第一范文网 - 专业文章范例文档资料分享平台

2020年中考数学一轮复习培优训练:《反比例函数》及答案

来源:用户分享 时间:2025/7/27 10:02:09 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴直线AO解析式为y=3x, ∵S△AEG=S△OFG ∴S△EFA=S△EFO ∴EF∥AO

∴直线l2的解析式为:y=3x+4;

②存在,点P坐标为:P(﹣1,1)或P(1,7). ∵S△PBC=S△OBC,

∴点P在经过点O或H平行于直线l1:y=﹣x+4的直线上,易得:y=﹣x或y=﹣x+8 分别解方程组

得:

∴点P的坐标为P(﹣1,1)或P(1,7). 10.解:(1)如图①,过B作BC⊥x轴于C,

∵OB=AB,BC⊥x轴, ∴OC=AC=OA, ∵点A的坐标为(6,0), ∴OA=6, ∴OC=AC=3, ∵点B在反比例函数y=(x>0)的图象上,

∴y=

=4,

∴B(3,4),

∵点A(6,0),点B(3,4)在y=kx+b的图象上, ∴

,解得:

29

∴直线AB的解析式为:y=﹣x+8; (2)如图①,∵∠OBA=90°,OB=AB, ∴△AOB是等腰直角三角形, ∴BC=OC=OA, 设点B(a,a)(a>0), ∵顶点B在反比例函数y=(x>0)的图象上, ∴a=,解得:a=(负值舍),

∴OC=2

∴OA=2OC=4,

∴A(4

,0);

(3)如图②,过P作PD⊥x轴于点D,

∵△PA1A是等腰直角三角形, ∴PD=AD,

设AD=m(m>0),则点P的坐标为(4+m,m),

∴m(4

+m)=12,

解得:x1=2﹣2,m2=﹣2﹣2

(负值舍去),∴A1A=2m=4

﹣4

, ∴OA1=OA+AA1=4, ∴点A1的坐标是(4

,0).

11.解:(1)∵A(﹣,0),B(0,2), ∴OA=,OB=2, ∵tan∠OAC=

=,

30

∴OC=1,BC=3, ∵BD=2OC, ∴BD=2, ∵BD⊥BC, ∴D(2,2),

把D(2,2)代入y=中,得到m=4, ∴反比例函数的解析式为y=.

(2)如图,设CD交x轴于K. ∵OK∥BD, ∴

, ∴=

∴OK=, ∵OC=1,OA=, ∴OC2=OA?OK, ∴

∵∠AOC=∠COK, ∴△AOC∽△COK, ∴∠OAC=∠OCK, ∵∠OAC+∠OCA=90°, ∴∠OCA+∠OCK=90°, ∴∠ACK=90°, ∴AC⊥CD.

(3)如图,作BH⊥CM于H. ∵A(﹣,0),C(0,﹣1),

31

∴直线AC的解析式为y=﹣x﹣1, ∵AE=BD=2, ∴OA=2+=,

∴E(﹣,0),∵B(0,2), ∴直线BE的解析式为y=x+2,

由解得,

∴M(﹣,), ∴CM=

,BM=

, ∵S△BCM=×3×=×

×BH,

∴BH=,

∴MH=

=,

∴tan∠BMC===2.

12.解:(1)如图1中,连接PO,延长PO到K. 32

2020年中考数学一轮复习培优训练:《反比例函数》及答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c60axh4tpjp47le14lopx1jxus0hkxz00vvz_8.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top