4.2.3 模拟ARMA(1,4)初探
> chip.m2=arima(sales,order=c(1,0,4),xreg=data.frame(price)) > chip.m2
Call:
arima(x = sales, order = c(1, 0, 4), xreg = data.frame(price))
Coefficients:
ar1 ma1 ma2 ma3 ma4 intercept price 0.1989 -0.0554 0.2521 0.0735 0.5269 15.7792 -2.4234 s.e. 0.1843 0.1660 0.0865 0.1084 0.1376 0.2166 0.1247
sigma^2 estimated as 0.02556: log likelihood = 42.35, aic = -70.69 结果表明ma1,ma3的系数并不显著,即可认为其系数为0
4.2.4 调整模型
>chip.m3=arima(sales,order=c(1,0,4),xreg=data.frame(price),fixed=c(NA,0,NA,0,NA,NA,NA))#第一个NA指代AR1的系数,第一个0指ma1第二个NA指的是ma2第二个0指的是ma3的系数。第三个na指ma4,倒数第二个na是指截距项对应的系数,最后一个na指的是price对应的系数。 > chip.m3
Call:
arima(x = sales, order = c(1, 0, 4), xreg = data.frame(price), fixed = c(NA,
0, NA, 0, NA, NA, NA))
Coefficients:
ar1 ma1 ma2 ma3 ma4 intercept price 0.1444 0 0.2676 0 0.5210 15.8396 -2.4588 s.e. 0.0985 0 0.0858 0 0.1171 0.2027 0.1166
sigma^2 estimated as 0.02572: log likelihood = 42.09, aic = -74.18 此模型的AR1系数项并不显著,所以再次调整模型 >
chip.m4=arima(sales,order=c(0,0,4),xreg=data.frame(price),fixed=c(0,NA,0,NA,NA,NA)) > chip.m4
Call:
arima(x = sales, order = c(0, 0, 4), xreg = data.frame(price), fixed = c(0, NA, 0, NA, NA, NA))
Coefficients:
ma1 ma2 ma3 ma4 intercept price 0 0.2884 0 0.5416 15.8559 -2.4682 s.e. 0 0.0794 0 0.1167 0.1909 0.1100
sigma^2 estimated as 0.02623: log likelihood = 41.02, aic = -74.05 此时模型建立完成,与一般线性回归比较,两模型的截距项与价格项系数是相似的,但是用时间序列估计的标准误差比用简单OLS回归所得的结果大约低10%,这阐明了如下的结论,即简单的OLS估计量具有一致性,但相关联的标准误差一般却是不可靠的。
4.2.5 对最终模型进行诊断分析
tsdiag(chip.m4)
5 附
m2=arima(days,order=c(0,0,2),xreg=data.frame(AO=seq(days)==129))#拟合含有AO值时用xreg设置,若无IO可直接用arima拟合
m3=arimax(days,order=c(0,0,2),xreg=data.frame(AO=seq(days)== 129),io=c(63))#拟合含有IO值的要用arimax。
相关推荐: