山东理工大学 第1 页 共 33 页
AT89S52具有下列主要性能: ·8KB可改编程序Flash存储 ·全静态工作:0Hz~24MHz ·三级程序存储器保密 ·128×8字节内部RAM ·32条可编程I/O线 ·2个16位定时器/计数器 ·6个中断源 ·可编程串行通道 ·片内时钟振荡器 AT89S52的引脚及功能
1234567891011121314151617181920P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RSTP3.0(RXD)P3.1(TXD)P3.2(INT0)P3.3(INT1)P3.4(T0)P3.5(T1)P3.6(WR)P3.7(RD)XTAL2XTAL1GNDVCCP0.0(AD0)P0.1(AD1)P0.2(AD2)P0.3(AD3)P0.4(AD4)P0.5(AD5)P0.6(AD6)P0.7(AD7)EA/VPPALE/PROGPSENP2.7(A15)P2.6(A14)P2.5(A13)P2.4(A12)P2.3(A11)P2.2(A10)P2.1(A9)P2.0(A8)4039383736353433323130292827262524232221AT89S52单片机的管脚说明如图3.2所示。 (1) 主要电源引脚
①VCC 电源端 ②GND 接地端
(2) 外接晶体引脚XTAL1和XTAL2
图3.2 AT89S52的管脚 ①XTAL1 接外部晶体的一个引脚。在单片机内部,它是构成片内振荡器的反相放大器的输入端。当采用外部振荡器时,该引脚接收振荡器的信号,既把此信号直接接到内部时钟发生器的输入端。
②XTAL2 接外部晶体的另一个引脚。在单片机内部,它是上述振荡器的反相放大器的输出端。采用外部振荡器时,此引脚应悬浮不连接。
(3) 控制或与其它电源复用引脚RST、ALE//PROG、/PSEN和/EA/VPP
①RST 复位输入端。 当振荡器运行时,在该引脚上出现两个机器周期的高电平将使单片机复位。
②ALE//PROG 当访问外部存储器时,ALE(地址锁存允许)的输出用于锁存地址的低位字节。即使不访问外部存储器,ALE端仍以不变的频率(此频率为振荡器频率的1/6)周期性地出现正脉冲信号。因此,它可用作对外输出的时钟,或用于定时目的。然而要注意的是:每当访问外部数据存储器时,将跳过一个ALE脉冲。在对Flash存储器编程期间,该引脚还用于输入编程脉冲(/PROG)[6]。
③/PSEN 程序存储允许(/PSEN)输出是外部程序存储器的读选通信号。当AT89S52/LV52由外部程序存储器取指令(或常数)时,每个机器周期两次/PSEN有效(既输出2个脉冲)。但在此期间内,每当访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
④/EA/VPP 外部访问允许端。要使CPU只访问外部程序存储器(地址为0000H~FFFFH),则/EA端必须保持低电平(接到GND端)。当/EA端保持高电平(接VSS端)时,
山东理工大学 第1 页 共 33 页
CPU则执行内部程序存储器中的程序。
(4) 输入/输出引脚 P0.0~ P0.7、P1.0~P1.7、P2.0~ P2.7 和P3.0~P3.7 ①P0端口(P0.0~ P0.7) P0是一个8位漏极开路型双向I/O端口。作为输出口用时,每位能以吸收电流的方式驱动8个TTL输入,对端口写1时,又可作高阻抗输入端用。
②P1端口(P1.0~ P1.7) P1是一个带有内部上拉电阻的8位双向I/O端口。P1的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。作输入口时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。
③P2端口 (P2.0~P2.7) P2是一个带有内部上拉电阻的8位双向I/O端口。P2的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。P2作输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。
④P3端口(P3.0~P3.7) P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流,这是由于上拉的缘故。
P3口也可作为AT89S52的一些特殊功能,这些特殊功能见表3-1[7]。
表3-1 P3端口的特殊功能
端口引脚 P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7 兼 用 功 能 RXD (串行输入口) TXD (串行输出口) /INT0 (外部中断0) /INT1 (外部中断1) T0 ( 定时器0的外部输入) T1 (定时器1的外部输入) /WR (外部数据存储器写选通) /RD (外部数据存储器读选通)
3.3.2 红外对管
红外对管是红外线发射管与红外接收管配合在一起使用时候的总称。红外线发射管(如图3.3)在LED封装行业中主要有三个常用的波段,如下850NM、875NM、940NM。根据波长的特性运用的产品也有很大的差异,850NM波长的主要用于红外线监控设备、875NM主要用于医疗设备、940NM波段的主要用于红外线控制设备。例如:红外线遥控器、光电开关、光电记数设备等。红外线接收管(如图3.4)是将
山东理工大学 第1 页 共 33 页
红外线光信号变成电信号的半导体器件,它的核心部件是一个特殊材料的PN结,和普通二极管相比,在结构上采取了大的改变,红外线接收管为了更多更大面积的接受入射光线,PN结面积尽量做的比较大,电极面积尽量减小,而且PN结的结深很浅,一般小于1微米。红外线接收二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。当有红外线光照时,携带能量的红外线光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对(简称:光生载流子)。它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。红外线接收二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。红外接收管的作用是进行光电转换,在光控、红外线遥控、光探测、光纤通信、光电耦合等方面有广泛的应用。
图3.3 红外线发射管 图3.4红外线接收管 3.3.3 数码管
数码管(如图3.5)是一种半导体发光器件,其基本单元是发光二极管。数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1位、2位、4位等等数码管;按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。共阳数码管(如图3.6)是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。当某一字段的阴极为高电平时,相应字段就不亮。。共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮。当某一字段的阳极为低电平时,相应字段就不亮。本设计需要用到数码管的动态显示方式。数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划\的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以我们只要将需
山东理工大学 第1 页 共 33 页
要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。通过分时轮流控制各个数码管的的COM端,就使各个数码管轮流受控显示,这就是动态驱动。在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低.
图3.5数码管实物图 图3.6数码管原理图
3.3.4继电器
继电器是一种电子控制器件,如图3.7所示。它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。
图3.7继电器原理图
电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电
相关推荐: