1£®·Ö½âÒòʽ£º
(2)x10+x5-2£»
(4)(x5+x4+x3+x2+x+1)2-x5£® 2£®·Ö½âÒòʽ£º (1)x3+3x2-4£» (2)x4-11x2y2+y2£» (3)x3+9x2+26x+24£» (4)x4-12x+323£® 3£®·Ö½âÒòʽ£º
(1)(2x2-3x+1)2-22x2+33x-1£» (2)x4+7x3+14x2+7x+1£» (3)(x+y)3+2xy(1-x-y)-1£» (4)(x+3)(x2-1)(x+5)-20£®
µÚÒ»½² Òòʽ·Ö½â(Ò»)
¶àÏîʽµÄÒòʽ·Ö½âÊÇ´úÊýʽºãµÈ±äÐεĻù±¾ÐÎʽ֮һ£¬Ëü±»¹ã·ºµØÓ¦ÓÃÓÚ³õµÈÊýѧ֮ÖУ¬ÊÇÎÒÃǽâ¾öÐí¶àÊýѧÎÊÌâµÄÓÐÁ¦¹¤¾ß£®Òòʽ·Ö½â·½·¨Áé»î£¬¼¼ÇÉÐÔÇ¿£¬Ñ§Ï°ÕâЩ·½·¨Óë¼¼ÇÉ£¬²»½öÊÇÕÆÎÕÒòʽ·Ö½âÄÚÈÝËù±ØÐèµÄ£¬¶øÇÒ¶ÔÓÚÅàÑøÑ§ÉúµÄ½âÌâ¼¼ÄÜ£¬·¢Õ¹Ñ§ÉúµÄ˼άÄÜÁ¦£¬¶¼ÓÐ×ÅÊ®·Ö¶ÀÌØµÄ×÷Ó㮳õÖÐÊýѧ½Ì²ÄÖÐÖ÷Òª½éÉÜÁËÌáÈ¡¹«Òòʽ·¨¡¢ÔËÓù«Ê½·¨¡¢·Ö×é·Ö½â·¨ºÍÊ®×ÖÏà
ÓÃÐÄ °®ÐÄ ×¨ÐÄ
³Ë·¨£®±¾½²¼°ÏÂÒ»½²ÔÚÖÐѧÊýѧ½Ì²Ä»ù´¡ÉÏ£¬¶ÔÒòʽ·Ö½âµÄ·½·¨¡¢¼¼ÇɺÍÓ¦ÓÃ×÷½øÒ»²½µÄ½éÉÜ£® 1£®ÔËÓù«Ê½·¨
ÔÚÕûʽµÄ³Ë¡¢³ýÖУ¬ÎÒÃÇѧ¹ýÈô¸É¸ö³Ë·¨¹«Ê½£¬ÏÖ½«Æä·´ÏòʹÓ㬼´ÎªÒòʽ·Ö½âÖг£ÓõĹ«Ê½£¬ÀýÈ磺 (1)a2-b2=(a+b)(a-b)£» (2)a2¡À2ab+b2=(a¡Àb)2£» (3)a3+b3=(a+b)(a2-ab+b2)£» (4)a3-b3=(a-b)(a2+ab+b2)£® ÏÂÃæÔÙ²¹³ä¼¸¸ö³£ÓõĹ«Ê½£º (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2£»
(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)£»
(7)an-bn=(a-b)(an-1+an-2b+an-3b2+¡+abn-2+bn-1)ÆäÖÐnΪÕýÕûÊý£» (8)an-bn=(a+b)(an-1-an-2b+an-3b2-¡+abn-2-bn-1)£¬ÆäÖÐnΪżÊý£» (9)an+bn=(a+b)(an-1-an-2b+an-3b2-¡-abn-2+bn-1)£¬ÆäÖÐnÎªÆæÊý£®
ÔËÓù«Ê½·¨·Ö½âÒòʽʱ£¬Òª¸ù¾Ý¶àÏîʽµÄÌØµã£¬¸ù¾Ý×Öĸ¡¢ÏµÊý¡¢Ö¸Êý¡¢·ûºÅµÈÕýÈ·Ç¡µ±µØÑ¡Ôñ¹«Ê½£® Àý1 ·Ö½âÒòʽ£º
(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4£» (2)x3-8y3-z3-6xyz£» (3)a2+b2+c2-2bc+2ca-2ab£»
ÓÃÐÄ °®ÐÄ ×¨ÐÄ
(4)a7-a5b2+a2b5-b7£®
½â (1)Ôʽ=-2xn-1yn(x4n-2x2ny2+y4) =-2xn-1yn[(x2n)2-2x2ny2+(y2)2] =-2xn-1yn(x2n-y2)2 =-2xn-1yn(xn-y)2(xn+y)2£® (2)Ôʽ=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz)£® (3)Ôʽ=(a2-2ab+b2)+(-2bc+2ca)+c2 £½(a-b)2+2c(a-b)+c2 =(a-b+c)2£®
±¾Ð¡Ìâ¿ÉÒÔÉÔ¼Ó±äÐΣ¬Ö±½ÓʹÓù«Ê½(5)£¬½â·¨ÈçÏ£º Ôʽ=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2
(4)Ôʽ=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)
=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4) Àý2 ·Ö½âÒòʽ£ºa3+b3+c3-3abc£®
±¾Ìâʵ¼ÊÉϾÍÊÇÓÃÒòʽ·Ö½âµÄ·½·¨Ö¤Ã÷Ç°Ãæ¸ø³öµÄ¹«Ê½(6)£®
ÓÃÐÄ °®ÐÄ ×¨ÐÄ
·ÖÎö ÎÒÃÇÒѾ֪µÀ¹«Ê½
(a+b)3=a3+3a2b+3ab2+b3
µÄÕýÈ·ÐÔ£¬ÏÖ½«´Ë¹«Ê½±äÐÎΪ
a3+b3=(a+b)3-3ab(a+b)£®
Õâ¸ö
ʽҲÊÇÒ»¸ö³£ÓõĹ«Ê½£¬±¾Ìâ¾Í½èÖúÓÚËüÀ´ÍƵ¼£®
½â Ôʽ=(a+b)3-3ab(a+b)+c3-3abc =£Û(a+b)3+c3£Ý-3ab(a+b+c)
=(a+b+c)£Û(a+b)2-c(a+b)+c2]-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca)£®
˵Ã÷ ¹«Ê½(6)ÊÇÒ»¸öÓ¦Óü«¹ãµÄ¹«Ê½£¬ÓÃËü¿ÉÒÔÍÆ³öºÜ¶àÓÐÓõĽáÂÛ£¬ÀýÈ磺ÎÒÃǽ«¹«Ê½(6)±äÐÎΪ a3+b3+c3-3abc
ÏÔÈ»£¬µ±a+b+c=0ʱ£¬Ôòa3+b3+c3=3abc£»µ±a+b+c£¾0ʱ£¬Ôòa3+b3+c3-3abc¡Ý0£¬¼´a3+b3+c3¡Ý3abc£¬¶øÇÒ£¬µ±ÇÒ½öµ±a=b=cʱ£¬µÈºÅ³ÉÁ¢£® Èç¹ûÁîx=a3¡Ý0£¬y=b3¡Ý0£¬z=c3¡Ý0£¬ÔòÓÐ
µÈºÅ³ÉÁ¢µÄ³äÒªÌõ¼þÊÇx=y=z£®ÕâÒ²ÊÇÒ»¸ö³£ÓõĽáÂÛ£®
ÓÃÐÄ °®ÐÄ ×¨ÐÄ
Àý3 ·Ö½âÒòʽ£ºx15+x14+x13+¡+x2+x+1£®
·ÖÎö Õâ¸ö¶àÏîʽµÄÌØµãÊÇ£ºÓÐ16Ï´Ó×î¸ß´ÎÏîx15¿ªÊ¼£¬xµÄ´ÎÊý˳´ÎµÝ¼õÖÁ0£¬ÓÉ´ËÏëµ½Ó¦Óù«Ê½an-bnÀ´·Ö½â£® ½â ÒòΪ
x16-1=(x-1)(x15+x14+x13+¡x2+x+1)£¬ ËùÒÔ
˵Ã÷ ÔÚ±¾ÌâµÄ·Ö½â¹ý³ÌÖУ¬Óõ½ÏȳËÒÔ(x-1)£¬ÔÙ³ýÒÔ(x-1)µÄ¼¼ÇÉ£¬ÕâÒ»¼¼ÇÉÔÚµÈʽ±äÐÎÖкܳ£Óã® 2£®²ðÏî¡¢ÌíÏî·¨
Òòʽ·Ö½âÊǶàÏîʽ³Ë·¨µÄÄæÔËË㣮ÔÚ¶àÏîʽ³Ë·¨ÔËËãʱ£¬ÕûÀí¡¢»¯¼ò³£½«¼¸¸öͬÀàÏîºÏ²¢ÎªÒ»Ï»ò½«Á½¸ö½ö·ûºÅÏà·´µÄͬÀàÏîÏ໥µÖÏûΪÁ㣮ÔÚ¶ÔijЩ¶àÏîʽ·Ö½âÒòʽʱ£¬ÐèÒª»Ö¸´ÄÇЩ±»ºÏ²¢»òÏ໥µÖÏûµÄÏ¼´°Ñ¶àÏîʽÖеÄijһÏî²ð³ÉÁ½Ïî»ò¶àÏ»òÕßÔÚ¶àÏîʽÖÐÌíÉÏÁ½¸ö½ö·ûºÏÏà·´µÄÏǰÕß³ÆÎª²ðÏºóÕß³ÆÎªÌíÏ²ðÏî¡¢ÌíÏîµÄÄ¿µÄÊÇʹ¶àÏîʽÄÜÓ÷Ö×é·Ö½â·¨½øÐÐÒòʽ·Ö½â£®
Àý4 ·Ö½âÒòʽ£ºx3-9x+8£®
·ÖÎö ±¾Ìâ½â·¨ºÜ¶à£¬ÕâÀïÖ»½éÉÜÔËÓòðÏî¡¢ÌíÏî·¨·Ö½âµÄ¼¸Öֽⷨ£¬×¢ÒâһϲðÏî¡¢ÌíÏîµÄÄ¿µÄÓë¼¼ÇÉ£® ½â·¨1 ½«³£ÊýÏî8²ð³É-1+9£® Ôʽ=x3-9x-1+9
ÓÃÐÄ °®ÐÄ ×¨ÐÄ
Ïà¹ØÍÆ¼ö£º