rrr?1r?1??Ar?1?Ar?C124?C124,化简得到9.4?r?10.4,又0?r?12,?r?10,????rrr?1r?1A?A??r?1r?2?C124?C124展开式中系数最大的项为T11,有T11?()C124x练:在(1?2x)的展开式中系数最大的项是多少? 解:假设Tr?1项最大,
rTr?1?C10?2rxr
101212101010?16896x10
rrr?1r?1??Ar?1?Ar?2(11?r)?r?C102?C102,化简得到6.3?k?7.3,又????rr解得?r?1r?1?r?1?2(10?r)?Ar?1?Ar?2??C102?C102,7772x?15360x7. 0?r?10,?r?7,展开式中系数最大的项为T8?C10题型七:含有三项变两项;
25例:求当(x?3x?2)的展开式中x的一次项的系数?
r25?rr2525解法①:(x?3x?2)?[(x?2)?3x],Tr?1?C5(x?2)(3x),当且仅当r?1时,Tr?1的
124144展开式中才有x的一次项,此时Tr?1?T2?C5(x?2)3x,所以x得一次项为C5C423x 144它的系数为C5C423?240。
255505145051455解法②:(x?3x?2)?(x?1)(x?2)?(C5x?C5x?????C5)(C5x?C5x2?????C52)
45544 故展开式中含x的项为C5xC52?C5x2?240x,故展开式中x的系数为240.
练:求式子(x?1?2)3的常数项? x解:(x?116?2)3?(x?),设第r?1项为常数项,则xx6?rrTr?1?C6(?1)rx(1r6?2r33r)?(?1)6C6x,得6?2r?0,r?3, ?T3?1?(?1)C6??20. x题型八:两个二项式相乘;
例:求(1?2x)(1?x)展开式中x的系数. 解:
mm(1?2x)3的展开式的通项是C3?(2x)m?C3?2m?xm,
nnnn(1?x)4的展开式的通项是Cn4?(?x)?C4??1?x,其中m?0,1,2,3,n?0,1,2,3,4,
342令m?n?2,则m?0且n?2,m?1且n?1,m?2且n?0,因此(1?2x)3(1?x)4
2110的展开式中x2的系数等于C30?20?C4?(?1)2?C3?21?C4?(?1)1?C32?22?C4?(?1)0??6.
练:求(1?3x)(1?6110)展开式中的常数项. 4xmn4m?3n?110mnmn)展开式的通项为C6x3?C10x4?C6?C10?x12 解:(1?3x)(1?4x6?m?0,?m?3,?m?6, 其中m?0,1,2,???,6,n?0,1,2,???,10,当且仅当4m?3n,即?或?或?n?0,n?4,n?8,???003468时得展开式中的常数项为C6?C10?C6?C10?C6?C10?4246.
练:已知(1?x?x)(x?解:(x?21n*)的展开式中没有常数项,n?N且2?n?8,则n?______. 3x1nn?rn?4r)展开式的通项为Cr?x?3r?Cr,通项分别与前面的三项相乘可得 n?xn?x3xn?4rn?4r?1n?4r?2Cr,Cr,Cr,展开式中不含常数项,2?n?8 n?xn?xn?x?n?4r且n?4r?1且n?4r?2,即n?4,8且n?3,7且n?2,6,?n?5.
题型九:奇数项的系数和与偶数项的系数和;
2006例:在(x?2)的二项展开式中,含x的奇次幂的项之和为S,当x?2时,S?_____.
解:设(x?2)2006=a0?a1x1?a2x2?a3x3??a2006x2006-------① ?a2006x2006-------②
(?x?2)2006=a0?a1x1?a2x2?a3x3?①?②得2(a1x?a3x3?a5x5??a2005x2005)?(x?2)2006?(x?2)2006
1?(x?2)2006展开式的奇次幂项之和为S(x)?[(x?2)2006?(x?2)2006]
212当x?2时,S(2)?[(2?2)2006?(2?2)2006]??22题型十:赋值法;
例:设二项式(33x?)n的展开式的各项系数的和为p,所有二项式系数的和为s,若
3?20062??23008
1xp?s?272,则n等于多少?
0nn解:若(33x?)n?a0?a1x?a2x2?????anxn,有P?a0?a1?????an,S?Cn????Cn?2,
1xn 令x?1得P?4,又p?s?272,即4?2?272?(2?17)(2?16)?0解得
nnnn2n?16或2n??17(舍去),?n?4.
?1?练:若?3x????的展开式中各项系数之和为64,则展开式的常数项为多少?
x???1?n解:令x?1,则?3x????的展开式中各项系数之和为2?64,所以n?6,则展开式的常数
x??项为C6(3x)?(?例:若(1?2x)解:令x?200933nn13)??540. x?a0?a1x1?a2x2?a3x3??a2009x2009(x?R),则aa1a2?2?????2009的值为 2222009a2009a2009aaa1a21,可得a0?1?2??????0,?????????a0 22009220092222222a2009aa 在令x?0可得a0?1,因而1?2???????1.
22222009554321练:若(x?2)?a5x?a4x?a3x?a2x?a1x?a0,则a1?a2?a3?a4?a5?____.
解:令x?0得a0??32,令x?1得a0?a1?a2?a3?a4?a5??1,
?a1?a2?a3?a4?a5?31.
题型十一:整除性; 例:证明:3证:32n?22n?2?8n?9(n?N*)能被64整除
?8n?9?9n?1?8n?9?(8?1)n?1?8n?9
0n?11nn?12n1n?1?Cn?Cn?18?18?????Cn?18?Cn?18?Cn?1?8n?9
0n?11nn?120n?11nn?12?Cn?Cn?Cn?18?18?????Cn?18?8(n?1)?1?8n?9?Cn?18?18?????Cn?18
由于各项均能被64整除?32n?2?8n?9(n?N*)能被64整除
相关推荐: