2019年江苏省苏州市中考数学试题及参考答案与解析
(满分130分,考试时间120分钟)
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.
1.5的相反数是( ) A.
B.﹣
C.5
D.﹣5
2.有一组数据:2,2,4,5,7,这组数据的中位数为( ) A.2
B.4
C.5
D.7
3.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为( ) A.0.26×108
B.2.6×108
C.26×106
D.2.6×107
4.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于( )
A.126°
B.134°
C.136°
D.144°
5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54°
B.36°
C.32°
D.27°
6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为( ) A.
=
B.
=
C.
=
D.
=
7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为( ) A.x<0
B.x>0
C.x<1
D.x>1
8.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18
m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是( )
1
A.55.5m
B.54m
C.19.5m
D.18m
9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为( )
A.6 B.8 C.10
D.12
10.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为( )
A.4 B.4 C.2
D.8
二、填空题:本大题共8小题,每小题3分,共24分. 11.计算:a2?a3= . 12.因式分解:x2﹣xy= . 13.若
在实数范围内有意义,则x的取值范围为 .
14.若a+2b=8,3a+4b=18,则a+b的值为 .
15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为 cm(结果保留根号).
2
16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为 .
17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为 .
18.如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为
cm,则图中阴影部分的面积为 cm2(结果保留根号).
三、解答题;本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明. 19.(5分)计算:(
)2+|﹣2|﹣(π﹣2)0
÷(1﹣
),其中,x=
﹣3.
20.(5分)解不等式组:21.(6分)先化简,再求值:
22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是
;
(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).
23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:
(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据); (2)m= ,n= ;
(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?
3
24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G. (1)求证:EF=BC;
(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.
25.(8分)如图,A为反比例函数y=
(其中x>0)图象上的一点,在x轴正半轴上有一点B,
.
OB=4.连接OA,AB,且OA=AB=2(1)求k的值;
(2)过点B作BC⊥OB,交反比例函数y=点D,求
的值.
(其中x>0)的图象于点C,连接OC交AB于
26.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.
4
(1)求证:DO∥AC; (2)求证:DE?DA=DC2; (3)若tan∠CAD=
,求sin∠CDA的值.
cm.如图
27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示. (1)直接写出动点M的运动速度为 cm/s,BC的长度为 cm;
①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M
(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2) ①求动点N运动速度v(cm/s)的取值范围;
②试探究S1?S2是否存在最大值,若存在,求出S1?S2的最大值并确定运动时间x的值;若不存在,请说明理由.
28.(10分)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6. (1)求a的值;
(2)求△ABC外接圆圆心的坐标;
(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.
5
相关推荐: