第一范文网 - 专业文章范例文档资料分享平台

(完整版)2018年湖南中考数学压轴题汇编:几何综合(解析版),推荐文档

来源:用户分享 时间:2025/8/8 20:47:19 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

在Rt△ABC中,∠ACB=90°﹣2α, ∵EC平分∠ACB,

∴∠ECB=(90°﹣2α)=45°﹣α, ∵∠BCF=45°+α,

∴∠ECF=45°﹣α+45°+α=90°, ∴∠BEC+∠ECF=180°, ∴BB′∥CF, ∴∵

==

=,

=sin(45°﹣α),

=sin(45°﹣α).

12.(2018?张家界)如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合). (1)当M在什么位置时,△MAB的面积最大,并求出这个最大值; (2)求证:△PAN∽△PMB.

解:(1)当点M在的中点处时,△MAB面积最大,此时OM⊥AB,

∵OM=AB=×4=2,

∴S△ABM=AB?OM=×4×2=4; (2)∵∠PMB=∠PAN,∠P=∠P, ∴△PAN∽△PMB.

13.(2018?常德)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.

(1)如图1,当M在线段BO上时,求证:MO=NO;

(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB; (3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC?AC. 解:(1)∵正方形ABCD的对角线AC,BD相交于O, ∴OD=OA,∠AOM=∠DON=90°, ∴∠OND+∠ODN=90°, ∵∠ANH=∠OND, ∴∠ANH+∠ODN=90°, ∵DH⊥AE, ∴∠DHM=90°, ∴∠ANH+∠OAM=90°, ∴∠ODN=∠OAM, ∴△DON≌△AOM, ∴OM=ON; (2)连接MN, ∵EN∥BD,

∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD, ∴EN=CN,同(1)的方法得,OM=ON, ∵OD=OD,

∴DM=CN=EN, ∵EN∥DM,

∴四边形DENM是平行四边形, ∵DN⊥AE, ∴?DENM是菱形, ∴DE=EN, ∴∠EDN=∠END, ∵EN∥BD, ∴∠END=∠BDN, ∴∠EDN=∠BDN, ∵∠BDC=45°, ∴∠BDN=22.5°, ∵∠AHD=90°,

∴∠AMB=∠DME=90°﹣∠BDN=67.5°, ∵∠ABM=45°,

∴∠BAM=67.5°=∠AMB, ∴BM=AB;

(3)设CE=a(a>0) ∵EN⊥CD, ∴∠CEN=90°, ∵∠ACD=45°, ∴∠CNE=45°=∠ACD, ∴EN=CE=a, ∴CN=

a,

设DE=b(b>0), ∴AD=CD=DE+CE=a+b, 根据勾股定理得,AC=

AD=

(a+b),

同(1)的方法得,∠OAM=∠ODN, ∵∠OAD=∠ODC=45°,

∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°, ∴△DEN∽△ADE,

∴∴∴a=∴CN=

, ,

b(已舍去不符合题意的) a=

b,AC=b,

b?

b=2b2

(a+b)=

b,

∴AN=AC﹣CN=

∴AN2=2b2,AC?CN=∴AN2=AC?CN.

14.(2018?郴州)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求证:直线AD是⊙O的切线;

(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.

解:(1)如图, ∵∠AEC=30°, ∴∠ABC=30°, ∵AB=AD,

∴∠D=∠ABC=30°,

根据三角形的内角和定理得,∠BAD=120°, 连接OA,∴OA=OB, ∴∠OAB=∠ABC=30°,

(完整版)2018年湖南中考数学压轴题汇编:几何综合(解析版),推荐文档.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c68nk52x3gy20sz532alg3gznb0gsy200bqn_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top