第一范文网 - 专业文章范例文档资料分享平台

深入浅出(HeadFirst)通信原理 - 图文

来源:用户分享 时间:2025/6/28 10:17:49 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

追求完美 追求和谐

连载20:用成对的旋转向量合成实信号

注:图中蓝色的向量即代表复傅立叶系数,即t=0时刻旋转向量所在的位置。

第29页 共54页

注意两点:

追求完美 追求和谐

1、由于初始相位关于实轴对称,旋转角速度相同,旋转方向相反,合并后的旋转向量只在实轴上有分量,在虚轴上没有分量。得到这样的结论是因为:我们分析的信号本身是实信号。 2、正负频率对应的复傅立叶系数合并,是向量相加,不是简单的幅度相加。

从前面的分析来看,虽然我们通过复傅立叶级数展开将实信号分解为了一系列的旋转向量之和(由此引出了复数,使得实信号的表达式中出现了复数),但由于逆时针和顺时针旋转的向量成对出现,而且成对出现的旋转向量的初始相位关于实轴对称,旋转的角速度相同,旋转方向相反,所以这些旋转向量合成的结果最终还是一个实信号(只在实轴上有分量,虚轴上的分量相互抵消掉了)。

连载21:利用李萨育图形认识复信号

通过前面的讲解,我们对实周期信号及其频谱有了一定的认识。 很多人会想到这个问题:如何理解复信号?

我们来回忆一下物理中学过的李萨育图形:当我们使用互相成谐波频率关系的两个信号分别作为X和Y偏转信号送入示波器时,这两个信号分别在X轴、Y轴方向同时作用于电子束而描绘出稳定的图形,这些稳定的图形就叫“李萨育图形”,如下图所示:

第30页 共54页

追求完美 追求和谐

附:画出李萨育图形的matlab程序 for f=1 :5 ; t=0:0.001:1000; x= cos (2*pi*t); y= sin (2*pi*f*t) ; subplot(1,5,f) ;plot(x,y) ; axis off; end

连载22:实信号和复信号的波形对比

在下面两张图中:x轴(实轴)、y轴(虚轴)所在的平面是复平面,t轴(时间轴)垂直于复平面。 上图为实信号f(t)=cos(2πt)的波形图。 下图为复信号f(t)=cos(2πt)+jsin(2πt)的波形图。

对比这两张图,很容易得出:实信号在复平面上投影时只有实轴方向有分量,而复信号在复平面上投影时实轴和虚轴方向都有分量。

第31页 共54页

追求完美 追求和谐

t=0:0.001:10; x=cos(2*pi*t);

subplot(2,1,1);plot3(x,t,0*t); set(gca,'YDir','reverse'); grid on;

x=cos(2*pi*t) ;

第32页 共54页

搜索更多关于: 深入浅出(HeadFirst)通信原理 - 图文 的文档
深入浅出(HeadFirst)通信原理 - 图文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6b5gf1t8xh6ehs64cpdt_8.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top