光明中学市图书馆5公里光明电影院2公里
⑴求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;
⑵如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?
25.(8分)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°. ⑴若AD=2,求AB;
⑵若AB+CD=23+2,求AB.
CDAB
26.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”. ⑴阅读填空
如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以
DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.
理由:连接AH,EH.
∵ AE为直径 ∴ ∠AHE=90° ∴ ∠HAE+∠HEA=90°. ∵ DH⊥AE ∴ ∠ADH=∠EDH=90° ∴ ∠HAD+∠AHD=90°
∴ ∠AHD=∠HED ∴ △ADH∽_____________. ∴
ADDH2?,即DH=AD×DE. DHDE2又∵ DE=DC ∴ DH=____________,即正方形DFGH与矩形ABCD等积.
5
HGADADCEFBCB
⑵操作实践
平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形. 如图②,请用尺规作图作出与□ABCD等积的矩形(不要求写具体作法,保留作图痕迹). ⑶解决问题
三角形的“化方”思路是:先把三角形转化为等积的_________________(填写图形名称),再转化为等积的正方形.
如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图). ⑷拓展探究
n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n-1边形,…,直至转化为等积的
三角形,从而可以化方.
如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).
27.(10分)如图,一次函数y=-x+4的图像与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.
6
⑴写出点A的坐标;
⑵当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.
⑶若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求
11?的值. S1S228.(10分)如图,反比例函数y=
k1的图像与一次函数y=x的图像交于点A、B,点B的横坐标x4
是4.点P是第一象限内反比例函数图像上的动点,且在直线AB的上方. ⑴若点P的坐标是(1,4),直接写出k的值和△PAB的面积;
⑵设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;
⑶设点Q是反比例函数图像上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.
常州市2015年中考数学试题答案
一、选择题(每小题2分,共16分)
7
1、A 2.D 3.B 4.C 5.C 6.A 7.D 8.B
二、填空题(每小题2分,共20分)
三、解答题(共10小题,共84分)
8
相关推荐: