第一范文网 - 专业文章范例文档资料分享平台

第八章 平面解析几何

来源:用户分享 时间:2025/7/24 10:52:04 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

3.已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2

的距离为________.

4.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点________. 5.已知直线l1:y=2x+3,若直线l2与l1关于直线x+y=0对称,又直线l3⊥l2,则l3

的斜率为________.

6.直线l经过两直线7x+5y-24=0和x-y=0的交点,且过点(5,1),则l的方程是 7.若直线l1:ax+2y=0和直线l2:2x+(a+1)y+1=0垂直,则实数a的值为________. 8.已知平面上三条直线x+2y-1=0,x+1=0,x+ky=0,如果这三条直线将平面划分为六部分,则实数k的所有取值为________.

9.已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是________. 11

10.已知+=1(a>0,b>0),求点(0,b)到直线x-2y-a=0的距离的最小值.

ab11.过点P(1,2)的直线l被两平行线l1:4x+3y+1=0与l2:4x+3y+6=0截得的线段长AB=2,求直线l的方程.

12.已知直线l:3x-y+3=0,求: (1)点P(4,5)关于l的对称点;

(2)直线x-y-2=0关于直线l对称的直线方程.

第三节圆_的_方_程

1.圆的定义及方程

定义 标准方程 平面内与定点的距离等于定长的点的集合(轨迹) (x-a)2+(y-b)2=r2 (r>0) 圆心:(a,b),半径:r 5

一般方程 x+y+Dx+Ey+F=0 (D2+E2-4F>0) 22DE-,-?, 圆心:?2??21半径:D2+E2-4F 2 2.点与圆的位置关系

点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系: (1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2. (2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2. (3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2

[例1] (1)已知圆C关于y轴对称,经过点(1,0)且被x轴分成两段弧长之比为1∶2,则 圆C的方程为________________.

(2)已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________________. 1.过圆x2+y2=4外一点P(4,2)作圆的两条切线,切点分别为A,B,则△ABP的外接 圆的方程是________. 与圆有关的最值问题

[例2] (1)过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为________________.

(2)P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,则x2+y2的最小值为________. 2.(1)与曲线C:x2+y2+2x+2y=0相内切,同时又与直线l:y=2-x相切的半径最小的圆的半径是________.

练习3

1.圆(x+2)2+y2=5关于原点P(0,0)对称的圆的方程为________. 2.下列能将圆x2+y2-2x-4y+1=0平分的直线是________. ①x+y-1=0;②x+y+3=0;③x-y+1=0;④x-y+3=0

3.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________________.

6

4.已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则MN的最小值是________.

5.已知关于x,y的方程C:x2+y2-2x-4y+m=0. (1)当m为何值时,方程C表示圆;

45

(2)在(1)的条件下,若圆C与直线l:x+2y-4=0相交于M、N两点,且MN=,

5求m的值.

第四节直线与圆的位置关系

一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)

相离 相切 相交 7

图形 量化 1.已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是________.

2.由直线y=x+1上的一点向圆x2+y2-6x+8=0引切线,则切线长的最小值为________.

3.直线x-y+1=0与圆x2+y2=r2相交于A,B两点,且AB的长为2,则圆的半径为________.

4.若圆x2+y2=1与直线y=kx+2没有公共点,则实数k的取值范围是________. 直线与圆的位置关系的判断

[例1] 已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则l与C的位置关系是________.

1.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是________.

直线与圆的位置关系的综合

[例2] 在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A,B两点, 则弦AB的长等于________.

2.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若MN≥23,则k的取值范围是________.

练习4

1.设m>0,则直线2(x+y)+1+m=0与圆x2+y2=m的位置关系为________. 2.直线x+3y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于________. 3.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是________.

8

Δ=0 d=r Δ>0 d<r 方程观点 几何观点 Δ<0 d>r

搜索更多关于: 第八章 平面解析几何 的文档
第八章 平面解析几何.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6cv6q8jw2z1xep036ojc_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top