实用文档
数.................................................... 设
x1,
x2?
??1,1?且
x1?x2........................................................................
.
2x2x1x2?x2x12?x1?x1x2(x2?x1)(1?x2x1)f(x2)?f(x1)== ??222221?x21?x12?1?x1??1?x2??1?x1??1?x2?因为?1?x1?x2?1,所以x2?x1?0,1?x2x1?0所以有f(x2)?f(x1)?0 即
有
f(x)在定义域内为增函
数............................................................................ (II)因为f(x)定义域为??1,1?且关于原点对称,又f(?x)=?所以f(x)在定义域内为奇函数................ 由f(t?)?f(t)?0有f(t?)??f(t)?f(?t) 又f(x)在??1,1?上单调递增 即?1?t?x=?f(x) 1?x212121?11???t?1...所以:t???,?. 2?24?
x解:(1) 设g?x??a ?a?0且a?1?,则a?8,
3?a=2, ?g?x??2x,
n?2x(2)由(1)知:f?x??, x?1m?2因为f(x)是奇函数,所以f(0)=0,即
n?1?0?n?1 , 2?m文案大全
实用文档
1?2x∴f?x??x?1, 又f(?1)??f?1?,
2?m11?2?2=??m?2; m?14?m1?1?2x11???(3)由(2)知f(x)?, x?1x2?222?1易知f(x)在R上为减函数. 又因f(x)是奇函数,从而不等式:
f?2t?3t2??f?t2?k??0
等价于f2t?3t2??ft2?k=fk?t2, 因f(x)为减函数,由上式得:2t?3t?k?t,…… 即对一切t?R有:2t?2t?k?0, 从而判别式????2??4?2?k?0?k?
21.已知函数f(x)??x?a?x?2,g(x)?2?x?2,其中a?R.
x??????22221. 2
(1)写出f(x)的单调区间(不需要证明);
(2)如果对任意实数m??0,1?,总存在实数n??0,2?,使得不等式f(m)?g(n) 成立, 求实数a的取值范围.
解:(1)f(x)???(x?a)(x?2),x?2,
?(x?a)(x?2),x?2.?①当a?2时,f(x)的递增区间是(??,??),f(x)无减区间;
a?2a?2 ,??);f(x)的递减区间是(2,);
22a?2③当a?2时,f(x)的递增区间是(??,),(2,??),f(x)的递减区间是
2a?2(,2). 2②当a?2时,f(x)的递增区间是(??,2),((2)由题意,f(x)在[0,1]上的最大值小于等于g(x)在[0,2]上的最大值. 当x?[0,2]时,g(x)单调递增,∴[g(x)]max?g(2)?4.
文案大全
实用文档
当x?[0,1]时,f(x)??(x?a)(x?2)??x?(2?a)x?2a. ①当
2a?2?0,即a??2时,[f(x)]max?f(0)??2a. 2由?2a?4,得a??2.∴a??2;
a?2a2?4a?4a?2)?②当0?. ?1,即?2?a?0时,[f(x)]max?f(242
文案大全
相关推荐: