线 性 代 数 - 9 -
面,按第四列展开有V4?A14?A24t?A34t2?A44t3,比较t2的系数得:
1?xx31yy31z?A34??(x?y?z)(z-x)(z?y)(y?x) z311yy31z?0的充要条件是x?y?z?0. z3xyzxzx. y又x,y,z是互异的实数,故xx3ax?byay?bzaz?bx6. 证明:ay?bzaz?bxax?by?(a3?b3)yaz?bxax?byay?bzz证明
axay?bzaz?bxbyay?bzaz?bx左边?ayaz?bxax?by?bzaz?bxax?by azax?byay?bzbxax?byay?bzxay?bzazybzaz?bxxay?bzzyzaz?bx?ayaz?bxax?bzbxax?by?a2yaz?bxzax?byayxbyay?bzzax?byxay?a2[yazzaxx?(a3?b3)yzzxbzzyzazyzbxx?b2zyxxax?by
yay?bzx?ybxyzbyyzxzx yx]?b2[zyxxax?zyayxxby] ybz?(1??)x1?x2?x3?1?7. 当?为何值时,方程组?x1?(1??)x2?x3??有唯一解?并用克莱姆法则求解.
?x?x?(1??)x??23?121??11??1111????2(??3)所以当,
解 因为方程组的系数行列式D?11??0且???3时,方程组有唯一解.又
- 10 - 习 题 解 答
1D1??11??11111??1???3?2?;?21??D2?11?1?2?2??;?21??1
1??1D3?11??11???4?2?3??2??1??2D3?3?2?2???1D1??2?2D22??1所以x1?. ??;x2???;x3??D?(??3)D?(??3)D?(??3)8.设4阶行列式的第1行元素依次为2,m,k,3,第1行元素的余子式为全为1,第3行元素的代数余子式依次为3,1,4,2,且行列式的值为1,求m,k的值. 解 由题设
a11?2,a12?m,a13?k,a14?3; M11?1,M12?1,M13?1,M14?1; A31?3,A32?1,A33?4,A34?2,
则有A11?1,A12??1,A13?1,A14??1.据行列式展开定理及其推论有
?a11A11?a12A12?a13A13?a14A14?1, ??a11A31?a12A32?a13A33?a14A34?0即
?2?1?m?(?1)?k?1?3?(?1)?1. ??2?3?m?1?k?4?3?2?0?m??4解得 ?.
k??2?1?5119.设A?1122132334,计算A41?A42?A43?A44的值,其中A4i(i?1,2,3,4)是对应34元素的代数余子式.
解 由行列式按行展开定理A41?A42?A43?A44?1?A41?1?A42?1?A43?1?A44
线 性 代 数 - 11 -
1?511?1111132131?5406?3061061362162121?1?1?610?0?1?1?6?6 10?2?360?20?2?30?210. 设行列式D?aijn,aij?|i?j|(?i,j),求D的值. 解 由题设
01D?aij?n101210?n?2n?1n?3n?2n?4n?3?01?102?
n?2n?3n?4n?1n?2n?3?依次将第i行的(-1)倍加到第i?1行(i?2,3,,?n),得
?1?1D??1??1?1?11?1?111?1?1?111111??110
n?1n?2n?3?再将第一列分别加到其余各列,得
?1?1D??1??1?2?20?2?200?2??2n?000000?0n?1?(?1)n?1(n?1)2n?2.
n?12n?32n?4?注:用同样的方法,可以求得行列式
12Dn?3?n212?321??n?1?n?2?12nn?1?21?(?1)n?1(n?1)2n?2
n?3n?2n?1n?2n?3?n?1n?2?- 12 - 习 题 解 答
0a11.设a,b,c为三角形的三边边长,证明:D?bc0aD?bca0cbbc0aa0cba0cbbc0abc0acb?0. a0cb a0证明 将2,3,4列的1倍加到第一列,提取公因式,得
c1b1?(a?b?c)a101将第1行的(?1)倍,加到利用2,3,4行,按第一列展开,得
1abc?ac?bb?c0?ac?bb?cD?(a?b?c)?(a?b?c)c?a?ba?c
0c?a?ba?cb?aa?b?c0b?aa?b?c继续计算
D?(a?b?c)c?a?b?ba?c?(a?b?c)(c?a?b)1?ba?c
0a?b?c0a?b?cr2?1?r1c1?1?c2c?a?bc?bb?c1c?bb?c?ca?b?(a?b?c)(c?a?b)0?ca?b?(a?b?c)(c?a?b)
a?b?c0a?b?c?(a?b?c)(c?a?b)(a?b?c)(b?c?a)
1c?bb?c由三角形的性质,上式四个因式中有三项小于零,故D?0.
2n12.设多项式f(x)?a0?a1x?a2x???anx,用克莱姆法则证明:如果f(x)存在n?1个互不相同的根,则f(x)?0.
解 设x1,x2,?,xn,xn?1为互不相同的根,则f(xi)?0(i?1,2,?,n?1),于是有
?a0?a1x1?a2x12???anx1n?0?2n?a0?a1x2?a2x2???anx2?0?
??2n?a?ax?ax???axnn?1?0?01n?12n?1该方程组的系数行列式(视a0,a1,a2,?,an为未知元)
相关推荐: