¡¿
x2y29. (2008ºþ±±ÎÄ)ÒÑ֪˫ÇúÏßC:2?2?1(a?0,b?0)µÄÁ½¸ö½¹µãΪF:(?2,0),F:(2,0),µãP(3,7)µÄÇúÏßCÉÏ.
ab £¨¢ñ£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨¢ò£©¼ÇOÎª×ø±êԵ㣬¹ýµãQ (0,2)µÄÖ±ÏßlÓëË«ÇúÏßCÏཻÓÚ²»Í¬µÄÁ½µãE¡¢F£¬Èô¡÷OEFµÄÃæ»ýΪ22,ÇóÖ±Ïß
lµÄ·½³Ì
10. (2008ºþ±±Àí)Èçͼ£¬ÔÚÒÔµãOΪԲÐÄ£¬|AB|=4Ϊֱ¾¶µÄ°ëÔ²ADBÖУ¬OD¡ÍAB£¬PÊǰëÔ²»¡ÉÏÒ»µã£¬ ¡ÏPOB=30¡ã£¬ÇúÏßCÊÇÂú×ã||MA|-|MB||Ϊ¶¨ÖµµÄ¶¯µãMµÄ¹ì¼££¬ÇÒÇúÏßC¹ýµãP. £¨¢ñ£©½¨Á¢Êʵ±µÄÆ½ÃæÖ±½Ç×ø±êϵ£¬ÇóÇúÏßCµÄ·½³Ì£» £¨¢ò£©Éè¹ýµãDµÄÖ±ÏßlÓëÇúÏßCÏཻÓÚ²»Í¬µÄÁ½µãE¡¢F. Èô¡÷OEFµÄÃæ»ý²»Ð¡ÓÚ£®£®£®2£®2£¬ÇóÖ±ÏßlбÂʵÄȡֵ·¶Î§.
(¢ò)½â·¨1£ºÒÀÌâÒ⣬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy£½kx+2£¬´úÈëË«ÇúÏßCµÄ·½³Ì²¢ÕûÀíµÃ£¨1-K2£©x2-4kx-6=0. ¡ßÖ±ÏßlÓëË«ÇúÏßCÏཻÓÚ²»Í¬µÄÁ½µãE¡¢F£¬ ¡à
1?k2?0,??(?4k)?4?6(1?k)?0,22?
k??1,?3?k?3.
¡àk¡Ê£¨-3,-1£©¡È£¨-1£¬1£©¡È£¨1£¬3£©. ÉèE£¨x£¬y£©£¬F(x2,y2)£¬ÔòÓÉ¢ÙʽµÃx1+x2=£üEF£ü£½(x1?x2)2?(y1?x2)2?224k6,ÓÚÊÇ ,xx??1221?k1?k223?k21?k2(1?k2)(x1?x2)2
2£½1?k?(x1?x2)?4x1x2?1?k?¶øÔµãOµ½Ö±ÏßlµÄ¾àÀëd£½
.
21?k2£¬
2112223?k22223?k?1?k??. ¡àS¡÷DEF=d?EF??22221?k21?k1?kÈô¡÷OEFÃæ»ý²»Ð¡ÓÚ22,¼´S¡÷OEF?22£¬ÔòÓÐ
223?k21?k2?22?k4?k2?2?0,½âµÃ?2?k?2.¡¡ ¢Û
×ۺϢڡ¢¢ÛÖª£¬Ö±ÏßlµÄбÂʵÄȡֵ·¶Î§Îª[-2£¬-1]¡È(1-,1) ¡È(1, 2).
18£®(2008È«¹ú¢ò¾íÎÄ¡¢Àí)ÉèÍÖÔ²ÖÐÐÄÔÚ×ø±êԵ㣬A(2£¬£¬0)B(0£¬1)ÊÇËüµÄÁ½¸ö¶¥µã£¬Ö±Ïßy?kx(k?0)ÓëABÏཻÓÚµãD£¬ÓëÍÖÔ²ÏཻÓÚE¡¢FÁ½µã£®
y £¨¢ñ£©ÈôED?6DF£¬ÇókµÄÖµ£»
B F £¨¢ò£©ÇóËıßÐÎAEBFÃæ»ýµÄ×î´óÖµ£®
D 2x O x2A ?y?1£¬ 18£®£¨¢ñ£©½â£ºÒÀÌâÉèµÃÍÖÔ²µÄ·½³ÌΪ4E Ö±ÏßAB£¬EFµÄ·½³Ì·Ö±ðΪx?2y?2£¬y?kx(k?0)£® ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 2·Ö Èçͼ£¬ÉèD(x0£¬kx0)£¬E(x1£¬kx1)£¬F(x2£¬kx2)£¬ÆäÖÐx1?x2£¬ ÇÒx1£¬x2Âú×ã·½³Ì(1?4k)x?4£¬ ¹Êx2??x1?2221?4k2£®¢Ù
ÓÉED?6DFÖªx0?x1?6(x2?x0)£¬µÃx0?ÓÉDÔÚABÉÏÖªx0?2kx0?2£¬µÃx0?ËùÒÔ
1510(6x2?x1)?x2?£»
27771?4k2£® 1?2k210?£¬
21?2k71?4k2»¯¼òµÃ24k?25k?6?0£¬
23½âµÃk?»òk?£®¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 6·Ö
38£¨¢ò£©½â·¨Ò»£º¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽºÍ¢Ùʽ֪£¬µãE£¬Fµ½ABµÄ¾àÀë·Ö±ðΪ
x1?2kx1?22(1?2k?1?4k2)h1??£¬
255(1?4k)h2?x2?2kx2?25?2(1?2k?1?4k2)5(1?4k)2£® ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 9·Ö
ÓÖAB?22?1?5£¬ËùÒÔËıßÐÎAEBFµÄÃæ»ýΪ
1AB(h1?h2) 214(1?2k) ?5225(1?4k)2(1?2k)? 21?4kS?1?4k2?4k ?21?4k2¡Ü22£¬
1ʱ£¬ÉÏʽȡµÈºÅ£®ËùÒÔSµÄ×î´óֵΪ22£® ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 12·Ö 2½â·¨¶þ£ºÓÉÌâÉ裬BO?1£¬AO?2£®
µ±2k?1£¬¼´µ±k?Éèy1?kx1£¬y2?kx2£¬ÓÉ¢ÙµÃx2?0£¬y2??y1?0£¬ ¹ÊËıßÐÎAEBFµÄÃæ»ýΪ S?S¡÷BEF?S¡÷AEF
?x2?2y2 ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 9·Ö
?(x2?2y2)2 22?x2?4y2?4x2y2 22¡Ü2(x2?4y2) ?22£¬
µ±x2?2y2ʱ£¬ÉÏʽȡµÈºÅ£®ËùÒÔSµÄ×î´óֵΪ22£® ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 12·Ö
1x2y2Àý4¡¢Èçͼ£¬ÍÖÔ²C£º2+2?1(a£¾b£¾0)µÄÀëÐÄÂÊΪ£¬Æä×󽹵㵽µãP(2£¬1)µÄ¾àÀëΪ10£®²»¹ýÔµã2abOµÄÖ±ÏßlÓëCÏཻÓÚA£¬BÁ½µã£¬ÇÒÏß¶ÎAB±»Ö±ÏßOPƽ·Ö£®
(¢ñ)ÇóÍÖÔ²CµÄ·½³Ì£»
(¢ò) Çó?ABPµÄÃæ»ýÈ¡×î´óʱֱÏßlµÄ·½³Ì£®
x2y22 ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C1£º2?2?1(a?b?0)µÄÀëÐÄÂÊe=£¬ÇÒÍÖÔ²CÉϵĵ㵽
3abQ£¨0£¬2£©µÄ¾àÀëµÄ×î´óֵΪ3.
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÔÚÍÖÔ²CÉÏ£¬ÊÇ·ñ´æÔÚµãM£¨m,n£©Ê¹µÃÖ±Ïßl£ºmx+ny=1ÓëÔ²O£ºx2+y2=1ÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬
ÇÒ¡÷OABµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê¼°Ïà¶ÔÓ¦µÄ¡÷OABµÄÃæ»ý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
Ïà¹ØÍÆ¼ö£º