【点评】本题考查了圆周角定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
三、解答题(本大题共有10题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(12分)(1)计算:((2)解方程:
+3=
﹣
)×.
;
【分析】(1)利用二次根式的乘法法则运算;
(2)先去分母得到整式方程,再解整式方程,然后进行检验确定原方程的解. 【解答】解:(1)原式==4=3
﹣;
﹣
(2)去分母得2x﹣5+3(x﹣2)=3x﹣3, 解得 x=4,
检验:当x=4时,x﹣2≠0,x=4为原方程的解. 所以原方程的解为x=4.
【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了分式方程. 18.(8分)PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,
2017年、2018年7~12月全国338个地级及以上市PM2.5平均浓度统计表
(单位:μg/m3)
月份
7
8
9
第13页(共24页)
10 11 12
年份 2017年 2018年
27 23
24 24
30 25
38 36 μg/m3;
51 49
65 53
(1)2018年7~12月PM2.5平均浓度的中位数为
(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 折线统计图 ;
(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由. 【分析】(1)根据中位数的定义解答即可;
(2)根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况; (3)观察统计表,根据统计表中的数据特点解答即可. 【解答】解:(1)2018年7~12月PM2.5平均浓度的中位数为故答案为:
;
=
μg/m3;
(2)可以直观地反映出数据变化的趋势的统计图是折线统计图, 故答案为:折线统计图;
(3)2018年7~12月与2017年同期相比PM2.5平均浓度下降了. 【点评】本题考查了统计图的选择,利用统计图的特点选择是解题关键.
19.(8分)小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中B、D两个项目的概率.
【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.
【解答】解:画树状图如下
第14页(共24页)
由树状图知共有6种等可能结果,其中小明恰好抽中B、D两个项目的只有1种情况, 所以小明恰好抽中B、D两个项目的概率为.
【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比. 20.(8分)如图,△ABC中,∠C=90°,AC=4,BC=8.
(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC于点D,求BD的长.
【分析】(1)分别以A,B为圆心,大于AB为半径画弧,两弧交于点M,N,作直线MN即可.
(2)设AD=BD=x,在Rt△ACD中,利用勾股定理构建方程即可解决问题. 【解答】解:(1)如图直线MN即为所求.
(2)∵MN垂直平分线段AB, ∴DA=DB,设DA=DB=x, 在Rt△ACD中,∵AD2=AC2+CD2, ∴x2=42+(8﹣x)2,
第15页(共24页)
解得x=5, ∴BD=5.
【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21.(10分)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.求: (1)观众区的水平宽度AB;
(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,结果精确到0.1m)
【分析】(1)根据坡度的概念计算;
(2)作CM⊥EF于M,DN⊥EF于N,根据正切的定义求出EN,结合图形计算即可. 【解答】解:(1)∵观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m, ∴AB=2BC=20(m),
答:观众区的水平宽度AB为20m; (2)作CM⊥EF于M,DN⊥EF于N, 则四边形MFBC、MCDN为矩形,
∴MF=BC=10,MN=CD=4,DN=MC=BF=23, 在Rt△END中,tan∠EDN=则EN=DN?tan∠EDN≈7.59,
∴EF=EN+MN+MF=7.59+4+10≈21.6(m), 答:顶棚的E处离地面的高度EF约为21.6m.
第16页(共24页)
,
相关推荐: