(2)判断CF与AB的位置关系,并说明理由; (3)求△AEF的周长.
【分析】(1)四边形APCD正方形,则DP平分∠APC,PC=PA,∠APD=∠CPD=45°,即可求解;
(2)△AEP≌△CEP,则∠EAP=∠ECP,而∠EAP=∠BAP,则∠BAP=∠FCP,又∠FCP+∠CMP=90°,则∠AMF+∠PAB=90°即可求解;
(3)证明△PCN≌△APB(AAS),则 CN=PB=BF,PN=AB,即可求解. 【解答】解:(1)证明:∵四边形APCD正方形, ∴DP平分∠APC,PC=PA, ∴∠APD=∠CPD=45°, ∴△AEP≌△CEP(AAS); (2)CF⊥AB,理由如下: ∵△AEP≌△CEP, ∴∠EAP=∠ECP, ∵∠EAP=∠BAP, ∴∠BAP=∠FCP,
∵∠FCP+∠CMP=90°,∠AMF=∠CMP, ∴∠AMF+∠PAB=90°, ∴∠AFM=90°, ∴CF⊥AB;
(3)过点 C 作CN⊥PB.
第21页(共24页)
∵CF⊥AB,BG⊥AB, ∴FC∥BN,
∴∠CPN=∠PCF=∠EAP=∠PAB, 又AP=CP,
∴△PCN≌△APB(AAS), ∴CN=PB=BF,PN=AB, ∵△AEP≌△CEP, ∴AE=CE, ∴AE+EF+AF =CE+EF+AF =BN+AF =PN+PB+AF =AB+CN+AF =AB+BF+AF =2AB =16.
【点评】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(3),证明△PCN≌△APB(AAS),是本题的关键.
26.(14分)已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0). (1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4). ①求m,k的值;
②直接写出当y1>y2时x的范围;
(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例
第22页(共24页)
函数y3=(x>0)的图象相交于点C.
①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;
②过点B作x轴的平行线与函数y1的图象相交与点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.
【分析】(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数表达式,即可求解;②由图象可以直接看出;
(2)①BD=2+n﹣m,BC=m﹣n,由BD=BC得:2+n﹣m=m﹣n,即可求解;②点E的坐标为(解.
【解答】解:(1)①将点A的坐标代入一次函数表达式并解得:k=2, 将点A的坐标代入反比例函数得:m=3×4=12; ②由图象可以看出x>3时,y1>y2;
(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),
,m),d=BC+BE=m﹣n+(1﹣
)=1+(m﹣n)(1﹣),即可求
则BD=2+n﹣m,BC=m﹣n, 由BD=BC得:2+n﹣m=m﹣n,
第23页(共24页)
即:m﹣n=1; ②点E的坐标为(
,m),
)=1+(m﹣n)(1﹣),
d=BC+BE=m﹣n+(1﹣当1﹣=0时,d为定值, 此时k=1,d=1.
【点评】本题为反比例函数综合运用题,涉及到一次函数、函数定值的求法,关键是通过确定点的坐标,求出对应线段的长度,进而求解.
第24页(共24页)
相关推荐: