第一范文网 - 专业文章范例文档资料分享平台

(鲁京津琼专用)2020版高考数学大一轮复习-4.5简单的三角恒等变换(第1课时)教案(含解析)

来源:用户分享 时间:2025/7/18 6:26:25 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

§4.5 简单的三角恒等变换

最新考纲

1.经历用向量的数量积推导出两角差的

余弦公式的过程,进一步体会向量方法的作用.2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.3.能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆).

1

1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cosαcosβ+sinαsinβ(C(α-β)) cos(α+β)=cosαcosβ-sinαsinβ(C(α+β)) sin(α-β)=sinαcosβ-cosαsinβ(S(α-β)) sin(α+β)=sinαcosβ+cosαsinβ(S(α+β)) tan(α-β)=tanα-tanβ1+tanαtanβ(T(α-β))

tan(α+β)=tanα+tanβ1-tanαtanβ(T(α+β))

2.二倍角公式 sin2α=2sinαcosα;

cos2α=cos2

α-sin2

α=2cos2

α-1=1-2sin2

α; 2

2tanαtan2α=. 2

1-tanα概念方法微思考

1.诱导公式与两角和差的三角函数公式有何关系?

π

提示 诱导公式可以看成和差公式中β=k·(k∈Z)时的特殊情形.

22.怎样研究形如f(x)=asinx+bcosx函数的性质?

提示 先根据辅助角公式asinx+bcosx=a+b·sin(x+φ),将f(x)化成f(x)=

22Asin(ωx+φ)+k的形式,再结合图象研究函数的性质.

3

题组一 思考辨析

1.判断下列结论是否正确(请在括号中打“√”或“×”)

(1)存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.( √ )

??2

(2)对任意角α都有1+sinα=?sin +cos ?.( √ )

22??

(3)y=3sinx+4cosx的最大值是7.( × ) (4)公式tan(α+β)=

tanα+tanβ可以变形为tanα+tanβ=tan(α+β)(1-

1-tanαtanβααtanαtanβ),且对任意角α,β都成立.( × ) 题组二 教材改编

π?4?2.若cosα=-,α是第三象限的角,则sin?α+?等于( ) 4?5?A.-

227272

B.C.-D. 10101010

答案 C

32

解析 ∵α是第三象限角,∴sinα=-1-cosα=-,

5π?32?4?272?∴sin?α+?=-×+?-?×=-. 4?52?5?210?3.sin347°cos148°+sin77°cos58°=. 答案

2 2

解析 sin347°cos148°+sin77°cos58°

=sin(270°+77°)cos(90°+58°)+sin77°cos58° =(-cos77°)·(-sin58°)+sin77°cos58°

4

=sin58°cos77°+cos58°sin77° =sin(58°+77°)=sin135°=

22

. 4.tan10°+tan50°+3tan10°tan50°=. 答案

3

解析 ∵tan60°=tan(10°+50°)=tan10°+tan50°

1-tan10°tan50°,

∴tan10°+tan50°=tan60°(1-tan10°tan50°) =3-3tan10°tan50°,

∴原式=3-3tan10°tan50°+3tan10°tan50°=3. 题组三 易错自纠

5.sin47°-sin17°cos30°cos17°=________.

答案 12

解析 原式=sin?30°+17°?-sin17°cos30°

cos17°

=sin30°cos17°+cos30°sin17°-sin17°cos30°cos17°

=sin30°cos17°cos17°=sin30°=12

. 6.化简:cos40°cos25°·1-sin40°=________.

答案

2

解析 原式=cos40°

cos25°1-cos50°

=cos40°cos25°·2sin25°=cos40°

2

=2. 2

sin50°7.(2018·烟台模拟)已知θ∈???0,π2???,且sin??π?θ-4??2?=10,则tan2θ=.

答案 -24

7

解析 方法一 sin??π?

θ-4??21?=10,得sinθ-cosθ=5,① θ∈??0,π?,①平方得2sinθcos24?

2

??

θ=25

5

(鲁京津琼专用)2020版高考数学大一轮复习-4.5简单的三角恒等变换(第1课时)教案(含解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6mlgp8snbu9y6ym8c7oz9pugm7qng700f2x_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top