∴a?5?1,∴AP=FD?5?1,
AF5?1. ?AP2∴AF=AD–DF=3?5,∴(2)证明:如图,在CD上截取DH=AF,
∵AF=DH,∠PAF=∠D=90°,AP=FD, ∴△PAF≌△FDH(SAS),∴PF=FH, ∵AD=CD,AF=DH,∴FD=CH=AP?5?1,
5,
∵点E是AB中点,∴BE=AE=1=EM,∴PE=PA+AE?∵EC2=BE2+BC2=1+4=5,∴EC?∴EC=PE,CM?5,
5?1,∴∠P=∠ECP,
∵AP∥CD,∴∠P=∠PCD, ∴∠ECP=∠PCD,且CM=CH?5?1,CF=CF,
∴△FCM≌△FCH(SAS),∴FM=FH,∴FM=PF.
(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,
∵EN⊥AB,AE=BE,∴AQ=BQ=AP?由旋转的性质可得AQ=AQ'?5?1,
5?1,AB=AB'=2,Q'B'=QB?5?1,
∵点B(0,–2),点N(2,–1),∴直线BN解析式为:y?设点B'(x,
1x–2, 21x–2), 22?1?∴AB'?x??x?2??2, ?2?2∴x?886,∴点B'(,?), 555∵点Q'(5?1,0),
8?36?∴B'Q'??5?1????5?1,
5?25?∴点B旋转后的对应点B'不落在线段BN上.
2
相关推荐: