【点评】本题考查了完全平方公式,灵活运用完全平方公式先求出a的值,是解决本题的关键. 32.(2012春?郯城县期末)分解因式: (1)2x2﹣x; (2)16x2﹣1;
(3)6xy2﹣9x2y﹣y3;
(4)4+12(x﹣y)+9(x﹣y)2. 【分析】(1)直接提取公因式x即可; (2)利用平方差公式进行因式分解;
(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解; (4)把(x﹣y)看作整体,利用完全平方公式分解因式即可. 【解答】解:(1)2x2﹣x=x(2x﹣1);
(2)16x2﹣1=(4x+1)(4x﹣1);
(3)6xy2﹣9x2y﹣y3, =﹣y(9x2﹣6xy+y2), =﹣y(3x﹣y)2;
(4)4+12(x﹣y)+9(x﹣y)2, =[2+3(x﹣y)]2, =(3x﹣3y+2)2.
【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y后,需要继续利用完全平方公式进行二次因式分解. 33.(2011春?乐平市期中)(2a+b+1)(2a+b﹣1) 【分析】把(2a+b)看成整体,利用平方差公式和完全平方公式计算后整理即可. 【解答】解:(2a+b+1)(2a+b﹣1), =(2a+b)2﹣1, =4a2+4ab+b2﹣1. 【点评】本题考查了平方差公式和完全平方公式的运用,构造成公式结构是利用公式的关键,需要熟练掌握并灵活运用. 34.(2009?贺州)分解因式:x3﹣2x2y+xy2.
【分析】先提取公因式x,再利用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2;
【解答】解:x3﹣2x2y+xy2, =x(x2﹣2xy+y2), =x(x﹣y)2. 【点评】主要考查提公因式法分解因式和利用完全平方公式分解因式,本题难点在于要进行二次分解. 35.(2011?雷州市校级一模)分解因式:
第13页(共15页)
(1)a4﹣16;
(2)x2﹣2xy+y2﹣9. 【分析】(1)两次运用平方差公式分解因式;
(2)前三项一组,先用完全平方公式分解因式,再与第四项利用平方差公式进行分解.
【解答】解:(1)a4﹣16=(a2)2﹣42, =(a2﹣4)(a2+4), =(a2+4)(a+2)(a﹣2);
(2)x2﹣2xy+y2﹣9, =(x2﹣2xy+y2)﹣9, =(x﹣y)2﹣32, =(x﹣y﹣3)(x﹣y+3). 【点评】(1)关键在于需要两次运用平方差公式分解因式; (2)主要考查分组分解法分解因式,分组的关键是两组之间可以继续分解因式. 36.(2008春?利川市期末)分解因式x2(x﹣y)+(y﹣x).
【分析】显然只需将y﹣x=﹣(x﹣y)变形后,即可提取公因式(x﹣y),然后再运用平方差公式继续分解因式. 【解答】解:x2(x﹣y)+(y﹣x), =x2(x﹣y)﹣(x﹣y), =(x﹣y)(x2﹣1), =(x﹣y)(x﹣1)(x+1). 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 37.(2009秋?三台县校级期末)分解因式 (1)a2(x﹣y)+16(y﹣x); (2)(x2+y2)2﹣4x2y2. 【分析】(1)先提取公因式(x﹣y),再利用平方差公式继续分解; (2)先利用平方差公式,再利用完全平方公式继续分解. 【解答】解:(1)a2(x﹣y)+16(y﹣x), =(x﹣y)(a2﹣16), =(x﹣y)(a+4)(a﹣4);
(2)(x2+y2)2﹣4x2y2, =(x2+2xy+y2)(x2﹣2xy+y2), =(x+y)2(x﹣y)2. 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 38.(2009春?扶沟县期中)因式分解
第14页(共15页)
(1)﹣8ax2+16axy﹣8ay2; (2)(a2+1)2﹣4a2. 【分析】(1)先提取公因式﹣8a,再用完全平方公式继续分解. (2)先用平方差公式分解,再利用完全平方公式继续分解. 【解答】解:(1)﹣8ax2+16axy﹣8ay2, =﹣8a(x2﹣2xy+y2), =﹣8a(x﹣y)2;
(2)(a2+1)2﹣4a2, =(a2+1﹣2a)(a2+1+2a), =(a+1)2(a﹣1)2. 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 39.(2011秋?桐梓县期末)因式分解: (1)3x﹣12x3
(2)6xy2+9x2y+y3. 【分析】(1)先提取公因式3x,再对余下的多项式利用平方差公式继续分解; (2)先提取公因式y,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.. 【解答】解:(1)3x﹣12x3 =3x(1﹣4x2) =3x(1+2x)(1﹣2x);
(2)6xy2+9x2y+y3 =y(6xy+9x2+y2) =y(3x+y)2. 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 40.(2003?黄石)若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值. 【分析】先把前三项根据完全平方公式的逆用整理,再根据两平方项确定出这两个数,利用乘积二倍项列式求解即可.
【解答】解:原式=(x+y)2﹣a(x+y)+52, ∵原式为完全平方式,
∴﹣a(x+y)=±2×5?(x+y), 解得a=±10.
【点评】本题考查了完全平方式,需要二次运用完全平方式,熟记公式结构是求解的关键,把(x+y)看成一个整体参与运算也比较重要.
第15页(共15页)
相关推荐: