ÔÚMATLABÃüÁî´°¿ÚÖÐÊäÈ룺 clear; close; x=-1:0.25:1;
y=[-0.2209,0.3295,0.8826,1.4392,2.0003,2.5645,3.1334,3.7061,4.2836]
p1=polyfit(x,y,1) p2=polyfit(x,y,2) y1=polyval(p1,x); y2=polyval(p2,x);
plot(x,y,'+',x,y1,'r:',x,y2,'k-.') ÔËÐнá¹û£º 1
ÄâºÏ¶àÏîʽΪ£ºy*=2.0516+2.0131ºÍy*=0.0313x2+2.2516x+2.20001 £¨2£©·ÇÏßÐÔÊý¾ÝÄâºÏº¯Êýlsqcurvefitµ÷ÓøñʽΪ£º c=lsqcurvefi£¨t'fun',x0,xdata,ydata£©
ÆäÖÐ'fun'ΪÄâºÏº¯ÊýµÄM-º¯ÊýÎļþÃû£¬x0Ϊ³õʼÏòÁ¿£¬xdata,ydataΪ²ÎÓëÇúÏßÄâºÏµÄʵÑéÊý¾Ý¡£º¯Êý·µ»ØÖµcΪ·ÇÏßÐÔº¯ÊýfunµÄÄâºÏϵÊý¡£
Àý2£º2004ÄêÈ«¹ú´óѧÉúÊýѧ½¨Ä£¾ºÈüCÌ⣨¾Æºó¼Ý³µ£©Öиø³öijÈËÔÚ¶Ìʱ¼äÄÚºÈÏÂÁ½Æ¿Æ¡¾Æºó£¬¼ä¸ôÒ»¶¨µÄʱ¼ä²âÁ¿ËûµÄѪҺÖоƾ«º¬Á¿y£¨ºÁ¿Ë/°ÙºÁÉý£©£¬µÃµ½Êý¾ÝÈç±í2¡£
±í2 ¾Æ¾«º¬Á¿ÓëÒû¾ÆÊ±¼äµÄʵÑéÊý¾Ý ʱ¼ä£¨Ð¡Ê±£© 0.25 0.5 0.75 1 ¾Æ¾«º¬Á¿ 30 68 7 35 75 8 28 1.5 2 2.5 3 3.5 4
4.5 5 41 82 82 9 10
77 68 11 12 15 12 68 58 13 14 10 7 51 50 15 16 7 4
ʱ¼ä£¨Ð¡Ê±£© 6 ¾Æ¾«º¬Á¿ 38 25 18
ͨ¹ý½¨Á¢Î¢·Ö·½³ÌÄ£Ð͵õ½¶Ìʱ¼äÄںȾƺóѪҺÖÐ ¾Æ¾«Å¨¶ÈÓëʱ¼äµÄ¹ØÏµÎª£º y=c1(e?c2t?e?c3t) £¨2£©
¸ù¾ÝʵÑéÊý¾Ý£¬ÀûÓ÷ÇÏßÐÔÄâºÏº¯Êýlsqcurvefit£¬È·¶¨Ä£ÐÍ£¨2£©Ê½ÖеIJÎÊýc1£¬c2£¬c3¡£Çó½â¹ý³ÌΪ£º
Ïȱàдһ¸öM-º¯ÊýÎļþExample2_1£º function f=Example2_1(c,tdata) f=c(1)*(exp(-c(2)*tdata)-exp(-c(3)*tdata)); ±£´æºó£¬ÔÚÃüÁî´°¿ÚÖÐÊäÈ룺 clear
tdata=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]; ydata=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 8 15 12 10 7 7 4]; c0=[1 1 1];
2
for i=1:50;
c=lsqcurvefit('Example2_1',c0,tdata,ydata);
c0=c; end
µÃµ½×îÓŽâΪ£ºc= 117.05,0.1930,1.9546 ´Ó¶øµÃ³öÄâºÏÇúÏߣº
y=117.05(e0.1930t?e1.9546t) 2.2.ͼÐδ°¿ÚÐÎʽ
£¨1£©ÀûÓöàÏîʽÄâºÏµÄ½»»¥Í¼ÃüÁGUI£©polytool£¬µ÷ÓøñʽΪ£ºpolytoo£¨lx,y£©
ÆäÖÐx,y·Ö±ðΪʵÑéÊý¾Ý¹¹³ÉµÄÏòÁ¿£¬ÀýÈçÀûÓÃpolytoolÇó½âÀý1µÄMATLABÃüÁîÈçÏ£º x=-1:0.25:1
y=[-0.2209,0.3295,0.8826,1.4392,2.0003,2.5645,3.1334,3.7061,4.2836];
polytool£¨x,y£©
´ò¿ª¶àÏîʽÄâºÏµÄ½»»¥Ê½½çÃæ£¬ÓÉÓÚÒªÄâºÏµÄº¯ÊýΪÏßÐÔº¯Êý£¬Òò´ËÔÚ¶àÏîʽÄâºÏ½»»¥Ê½½çÃæÖеÄDegreeÖÐÊäÈë1£¬µã»÷µ¼³öÊý¾ÝExport,³öÏÖ±£´æ¶Ô»°¿òExporttoWorkspace,Ñ¡ÖÐParameters£¨²ÎÊý£©,Residuals£¨²Ð²î£©ºóµã»÷OK£¬ÔÚMATLABµÄWorkspace´°¿ÚÖпÉÒÔ¿´µ½²ÎÊýΪ£º2.2516ºÍ2.0131£¬¼´ÄâºÏº¯ÊýΪ
Y*=2.2516x+2.0131¡£
ͬÑùÈç¹ûÄâºÏµÄº¯ÊýΪ¶þ´Îº¯Êý£¬ÔòÖ»ÒªÔÚDegreeÖÐÊäÈë2£¬ÆäËü²½ÖèÏàͬ£¬¿ÉµÃÄâºÏº¯ÊýΪ£º
Y*=0.0313x2+2.2516x+2.0001
ͨ¹ý²é¿´Residuals£¨²Ð²î£©Öµ£¬¿ÉÒÔ·¢ÏÖ¶þ´Îº¯ÊýÄâºÏµÄ²Ð²îÖµ±ÈÏßÐÔº¯ÊýµÄҪСһЩ£¬´ÓÄâºÏµÄЧ¹û¿´£¬¿ÉÒÔÑ¡Ôñ¶þ´Îº¯Êý×÷ΪÄâºÏº¯Êý£¬µ«ÓÉÓÚÏßÐÔº¯Êý½Ï¼òµ¥£¬²Ð²îÖµÒ²ºÜС£¬´Ó¼òµ¥³ö·¢£¬Ò²¿ÉÑ¡ÔñÏßÐÔº¯Êý×÷ΪÄâºÏº¯Êý¡£
£¨2£©»ù±¾ÄâºÏ½çÃæ
MATLABÌṩÁËÒ»¸ö·½±ã¼ò½àµÄÄâºÏ½çÃæ¡£¾ßÓÐÄâºÏ¿ìËٺͲÙ×÷¼ò±ãµÄÓÅÊÆ£¬Ö»ÄÜÄâºÏ¶àÏîʽ¡£ÀýÈçÓûù±¾ÄâºÏ½çÃæÇó½âÀý1µÄ¹ý³ÌÈçÏ£º
clear;
close; x=-1:0.25:1;
y=[-0.2209,0.3295,0.8826,1.4392,2.0003,2.5645,3.1334,3.7061,4.2836];
plot(x,y,'+'); ÔËÐнá¹û£º 3
ÔÚÉ¢µãͼµÄͼÐδ°¿ÚÉÏ·Ö±ðµã»÷²Ëµ¥µµÖеÄToolsBasic Fitting,ÔÚPlots FitsÖзֱðÑ¡ÖÐlinear¡¢quadratic¡¢Show equations¡¢plot residuals¡¢show norm of residuals£¬ËùµÃÄâºÏÖ±Ïß·½³ÌΪ£ºy*=2.3x+2£»
ÄâºÏ¶þ´Î¶àÏîʽΪ: Y*=0.031x2+2.3x+2
£¨3£©ÇúÏßÄâºÏ¹¤¾ß½çÃæcftool
ÇúÏßÄâºÏ¹¤¾ß½çÃæcftoolÊÇÒ»¸ö¿ÉÊÓ»¯µÄͼÐνçÃæ£¬¾ßÓÐÇ¿´óµÄͼÐÎÄâºÏ¹¦ÄÜ£¬ÏÂÃæÍ¨¹ýÒ»¸ö¾ßÌåÀý×ÓÀ´½éÉÜcftoolµÄÓ÷¨¡£
Àý3ijÉú»¯ÏµÑ§ÉúΪÑо¿àÑßÊÃ¹ËØÔÚijÏîø´Ù·´Ó¦ÖжԷ´Ó¦ËÙ¶ÈÓëµ×ÎïŨ¶ÈÖ®¼ä¹ØÏµµÄÓ°Ï죬Éè¼ÆÁËÒ»¸öʵÑ飬ËùµÃµÄʵÑéÊý¾Ý¼û±í3¡£¸ù¾ÝÎÊÌâµÄ±³¾°ºÍÊý¾Ý½¨Á¢Ò»¸öºÏÊʵÄÊýѧģÐÍ£¬À´·´Ó³ÕâÏîø´Ù·´Ó¦µÄËÙ¶ÈÓëµ×ÎïŨ¶ÈÖ®¼äµÄ¹ØÏµ¡£
±í3 àÑßÊÃ¹ËØÊµÑéÖеķ´Ó¦ËÙ¶ÈÓëµ×ÎïŨ¶ÈÊý¾Ý µ×ÎïŨ¶È£¨ppm£©x 0£®02 ·´Ó¦ËÙ¶Èy 0£®06 0£®11 0£®22 0£®56 1£®10 76 47 97 107 123 139 159 152 191 201 207 200
ø´Ù·´Ó¦µÄËÙ¶ÈyÓëµ×ÎïŨ¶ÈxÖ®¼äµÄ¹ØÏµ¿ÉÓÃÏÂÃæÁ½¸ö¼òµ¥Ä£ÐÍÃèÊö£º Michaelis-MentenÄ£ÐÍ£º 4
Ïà¹ØÍÆ¼ö£º