高考数学精品复习资料
2019.5
第3讲 圆锥曲线的综合问题
1.(20xx·福建)设P,Q分别为圆x+(y-6)=2和椭圆+y=1上的点,则P,Q两点间
10的最大距离是( ) A.52 C.7+2
B.46+2 D.62
2
2
x2
2
x2y22
2.(20xx·陕西)如图,椭圆E:2+2=1(a>b>0),经过点A(0,-1),且离心率为.
ab2
(1)求椭圆E的方程;
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.
1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.
热点一 范围、最值问题
圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.
x2y2
例1 (20xx·重庆)如图,椭圆2+2=1(a>b>0)的左、右焦点分别为
abF1、F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.
(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;
34
(2)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.
43
思维升华 解决范围问题的常用方法:
(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.
1
跟踪演练1 已知椭圆C的左,右焦点分别为F1,F2,椭圆的离心率为,且椭圆经过点P(1,
23). 2
(1)求椭圆C的标准方程;
→→
(2)线段PQ是椭圆过点F2的弦,且PF2=λF2Q,求△PF1Q内切圆面积最大时实数λ的值.
热点二 定点、定值问题
1.由直线方程确定定点,若得到了直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).
2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.
x2y21
例2 椭圆C:2+2=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为10.
ab2
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左,右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.
思维升华 (1)动直线l过定点问题解法:设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C过定点问题解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.
y2x2
跟踪演练2 已知直线l:y=x+6,圆O:x+y=5,椭圆E:2+2=1(a>b>0)的离心率
ab2
2
e=3
,直线l被圆O截得的弦长与椭圆的短轴长相等. 3
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.
热点三 探索性问题
1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则
相关推荐: