第一范文网 - 专业文章范例文档资料分享平台

人教版八年级19章数学教案1

来源:用户分享 时间:2025/7/11 10:51:40 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

1.理解三角形中位线的概念,掌握它的性质.

2.能较熟练地应用三角形中位线性质进行有关的证明和计算. 3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.

4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法. 二、 重点、难点

1.重点:掌握和运用三角形中位线的性质.

2.难点:三角形中位线性质的证明(辅助线的添加方法). 三、例题的意图分析

例1是教材P98的例4,这是三角形中位线性质的证明题,教材采用的是先证明后引出概念与性质的方法,它一是要练习巩固平行四边形的性质与判定,二是为了降低难度,因此教师们在教学中要把握好度.

建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2.

例2是一道补充题,选自老教材的一个例题,它是三角形中位线性质与平行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2.教学中,要把辅助线的添加方法讲清楚,可以借助与多媒体或教具. 四、课堂引入

1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?

2.你能说说平行四边形性质与判定的用途吗? (答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.) 3.创设情境

实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)

图中有几个平行四边形?你是如何判断的?

五、例习题分析

例1(教材P98例4) 如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.

分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成

立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.

12 13

方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.

(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同) 方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.

定义:连接三角形两边中点的线段叫做三角形的中位线. 【思考】:

(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?

(2)三角形的中位线与第三边有怎样的关系?

(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)

三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半. 〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)

例2(补充)已知:如图(1),在四边形ABCD中,E、F、G、H分别是 AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.

分析:因为已知点E、F、G、H分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证.

证明:连结AC(图(2)),△DAG中, ∵ AH=HD,CG=GD,

14

12121212

121同理EF∥AC,EF=AC.

2∴ HG∥AC,HG=AC(三角形中位线性质).

∴ HG∥EF,且HG=EF.

∴ 四边形EFGH是平行四边形.

此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

六、课堂练习

1.(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是 m,理由是 .

2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.

3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,

(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;

(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想. 七、课后练习

1.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是 cm.

2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是 cm.

3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.

15

19.2.1 矩形(一)

一、教学目标:

1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 3.渗透运动联系、从量变到质变的观点. 二、重点、难点

1.重点:矩形的性质.

2.难点:矩形的性质的灵活应用. 三、例题的意图分析

例1是教材P104的例1,它是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式.并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.

四、课堂引入

1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?

2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)

3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.

矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).

矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.

16

搜索更多关于: 人教版八年级19章数学教案1 的文档
人教版八年级19章数学教案1.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6pw7v6a5gp7e16g2fc33_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top