新高中必修五数学上期中第一次模拟试题含答案(2)
一、选择题
1.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为f1,第七个音的频率为f2,则A.4122 B.1116 C.82 f2= f1D.32
n?12.已知等比数列?an?的前n项和为Sn,且满足2Sn?2??,则?的值是( )
A.4 B.2 C.?2 D.?4
0?y…?2x?y?2?3.若不等式组?表示的平面区域是一个三角形,则实数a的取值范围是( )
0?x?y…??x?y?aA.?,??? C.?1,?
3?4?3??B.?0,1?
D.?0,1?U?,???
?4????4?3??4.定义在???,0???0,???上的函数f?x?,如果对于任意给定的等比数列?an?,若
?f?a??仍是比数列,则称f?x?为“保等比数列函数”.现有定义在???,0???0,???n上的如下函数: ①f?x??x;
3②f?x??e;
x③f?x??x;
④f?x??lnx
则其中是“保等比数列函数”的f?x?的序号为( ) A.①②
B.③④
C.①③
D.②④
5.已知等比数列{an}的各项均为正数,且a5a6?a4a7?18,则
log3a1?log3a2?log3a3?????log3a10?( )
A.10
B.12
C.1?log35
D.2?log35
6.已知等差数列{an}的前n项和为Sn,a1?9,A.4
B.5
S9S5???4,则Sn取最大值时的n为 95C.6 D.4或5
7.已知{an}为等比数列,a4?a7?2,a5a6??8,则a1?a10?( ) A.7
B.5
C.?5
D.?7
8.数列{an}满足a1=1,对任意n∈N*都有an+1=an+n+1,则( ) A.
111????=a1a2a20192020 2019B.
2019 1010C.
2017 1010D.
4037 20209.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列?an?,则此数列的项数为( ) A.134
B.135
C.136
D.137
10.若函数f(x)?x?A.3
1(x?2)在x?a处取最小值,则a等于( ) x?2C.1?2 D.4
B.1?3 11.已知锐角三角形的边长分别为1,3,a,则a的取值范围是( ) A.?8,10?
B.22,10
??C.22,10
??D.
?10,8
?12.若0?a?1,b?c?1,则( ) A.()?1
bcaB.
c?ac? b?abC.ca?1?ba?1 D.logca?logba
二、填空题
13.在?ABC中,内角A,B,C所对的边分别为a,b,c,a?2,且
?2?b??sinA?sinB???c?b?sinC,则?ABC面积的最大值为______.
111,,L,,L,则其前n项的和等于______. 1?21?2?31?2?3?L?n15.在VABC中,角A,B,C所对的边分别为a,b,c,且满足,14.已知数列1sinAsinB?sin2C?sin2A?sin2B,若VABC的面积为3,则ab?__
16.已知a?0,b?0,12??2,a?2b的最小值为_______________. ab1,n?N*,则a2019?__________. 1?an17.已知数列?an?满足a1?1,an?1??18.已知?ABC的内角A,B,C的对边分别为a,b,c.若c?1,?ABC的面积为
a2?b2?1,则?ABC面积的最大值为_____. 419.?ABC的内角A,B,C的对边分别为a,b,c,若2bcosB?acosC?ccosA,则B?
________.
?2x?y?0?20.已知实数x,y满足约束条件?y?x,若z?2x?y的最小值为3,则实数
?y??x?b?b?____ 三、解答题
21.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=5百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=?,??(
?,?). 2
(1)当cos?=?5时,求小路AC的长度; 5(2)当草坪ABCD的面积最大时,求此时小路BD的长度. 22.在VABC中,?B?从①sinA??3,b?7,________________,求BC边上的高.
21, ②sinA?3sinC, ③a?c?2这三个条件中任选一个,补充在上面7问题中并作答.
23.已知等差数列?an?满足a1?a3?a5?9,a2?a4?a6?12,等比数列?bn?公比
q?1,且b2?b4?a20,b3?a8.
(1)求数列?an?、?bn?的通项公式;
n(2)若数列?cn?,满足cn?4?bn,且数列?cn?的前n项和为Bn,求证:数列??bn??的?Bn?前n项和Tn?3. 22*24.已知数列?an?的前n项和Sn?pn?qnp,q?R,n?N,且a1?3,S4?24.
??(1)求数列?an?的通项公式;
(2)设bn?2n,求数列?bn?的前n项和Tn.
a1sinA?3cosA共线,其中A是△ABC的内角. 25.已知向量m?sinA,2与n?3,????(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状. 26.等比数列?an?中,a1?2,a7?4a5. (Ⅰ)求?an?的通项公式;
(Ⅱ)记Sn为?an?的前n项和.若Sm?126,求m.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】
:先设第一个音的频率为a,设相邻两个音之间的频率之比为q,得出通项公式, 根据最后一个音是最初那个音的频率的2倍,得出公比,最后计算第三个音的频率与第七个音的频率的比值。 【详解】
n?1:设第一个音的频率为a,设相邻两个音之间的频率之比为q,那么an?aq,根据最
后一个音是最初那个音的频率的2倍,a?2a?aq?q?2,所以
1312112f2a7??q4?32,故选D f1a3【点睛】
:本题考查了等比数列的基本应用,从题目中后一项与前一项之比为一个常数,抽象出等比数列。
2.C
解析:C 【解析】 【分析】
利用Sn先求出an,然后计算出结果. 【详解】
根据题意,当n?1时,2S1?2a1?4??,?a1?n?1故当n?2时,an?Sn?Sn?1?2,
4??, 2Q数列?an?是等比数列,
则a1?1,故解得???2, 故选C. 【点睛】
本题主要考查了等比数列前n项和Sn的表达形式,只要求出数列中的项即可得到结果,较为基础.
4???1, 23.D
解析:D 【解析】 【分析】
0?y…?2x?y?2?要确定不等式组?表示的平面区域是否一个三角形,我们可以先画出
x?y…0???x?y?a0?y…??2x?y?2,再对a值进行分类讨论,找出满足条件的实数a的取值范围. ?x?y…0?【详解】
0?y…?不等式组?2x?y?2表示的平面区域如图中阴影部分所示.
?x?y…0?
由??x?y?22?得A?,?,
?33??2x?y?2
相关推荐: