a?3?3?21??2,不合要求;综上,a??为所求。
46
a2?lnx,其定义域为?0,20.(1)解法1:∵h?x??2x? ???, xa21∴h??x??2?2?.
xx2∵x?1是函数h?x?的极值点,∴h??1??0,即3?a?0.
∵a?0,∴a?经检验当a?∴a?3.
3时,x?1是函数h?x?的极值点,
3.
a2?lnx,其定义域为?0,解法2:∵h?x??2x????, xa21∴h??x??2?2?.
xxa2122令h??x??0,即2?2??0,整理,得2x?x?a?0.
xx2∵??1?8a?0,
?1?1?8a2?1?1?8a2∴h??x??0的两个实根x1?(舍去),x2?,
44当x变化时,h?x?,h??x?的变化情况如下表:
x ?0,x2? — x2 0 极小值 ?x2,??? + h??x? h?x? ] Z ?1?1?8a2?1,即a2?3, 依题意,
4∵a?0,∴a?3. (2)解:对任意的x1,x2??1,e?都有f?x1?≥g?x2?成立等价于对任意的
x1,x2??1,e?都有??f?x???min≥??g?x???max.
1当x?[1,e]时,g??x??1??0.
x∴函数g?x??x?lnx在?1,e?上是增函数.
∴??g?x???max?g?e??e?1.
a2?x?a??x?a?∵f??x??1?2?,且x??1,e?,a?0.
xx2x?a??x?a????0, ①当0?a?1且x?[1,e]时,f?x??x2a2∴函数f?x??x?在[1,e]上是增函数,
x2∴?. fx?f1?1?a???????min由1?a≥e?1,得a≥e,
又0?a?1,∴a不合题意.
②当1≤a≤e时, 若1≤x<a,则f??x??2x2?x?a??x?a??0.
若a<x≤e,则f??x??x2a2∴函数f?x??x?在?1,a?上是减函数,在?a,e?上是增函数.
x∴??f?x???min?f?a??2a.
由2a≥e?1,得a≥又1≤a≤e,∴
?x?a??x?a??0,
e?1, 2e?1≤a≤e. 2③当a?e且x?[1,e]时,f??x???x?a??x?a??0x2,
a2∴函数f?x??x?在?1,e?上是减函数.
xa2∴??f?x???min?f?e??e?e.
a2
由e?≥e?1,得a≥e,
e
又a?e,∴a?e.
?e?1?,???. 综上所述,a的取值范围为??2?
相关推荐: