优质文档
21.解:(Ⅰ)∵f'(x)?1a?,函数f(x)在x?1处的切线平行于直线2x?y?0, xx2∴f'(1)?1?a?2,∴a??1. (Ⅱ)f'(x)?递增;
当a?1时,f'(x)?0,解得x?a,1?x?a,f'(x)?0;x?a,f'(x)?0,则f(x)在(1,a)上单调递减,在(a,??)上单调递增.
(Ⅲ)当a?1时,f(x)?f(1)?a,则不存在x0?(1,??),使得f(x0)?a成立, 当a?1时,f(x)min?f(a)?lna?1,
若lna?1?a,则lna?1?a?0,设g(a)?lna?1?a, ∴g'(a)?1ax?a?2?2,若x?1,当a?1时,f'(x)?0,f(x)在(1,??)上单调xxx1?1?0,则g(a)在(1,??)单调递减,g(a)?g(1)?0, a∴此时存在x0?a,使得f(x0)?a成立. 综上所述,a?1.
x2?y2?1, 22.解:(Ⅰ)曲线C化为普通方程3由
2??cos(??)??1,得?cos???sin???2, 24所以直线l的直角坐标方程为x?y?2?0.
?2x??1?t,??2(Ⅱ)直线l1的参数方程为?(t为参数), ?y?2t??2x2?y2?1化简得2t2?2t?2?0, 代入3设A,B两点所对应的参数分别为t1,t2,则t1t2??1, ∴|MA|?|MB|?|t1t2|?1.
优质文档
优质文档
23.解:(Ⅰ)当a?2时,f(x)?|x?2|?|x?1|,原不等式等价于 211???2?x??,x??,?x??2,?????22或?或? ?111?x?2?x??3??x?2?x??3?x?2?x??3.?2???2?2解得x??111或x??或x?, 44??11或x?41??. 4?所以不等式的解集为?x|x??(Ⅱ)f(m)?f(?11111)?|m?a|?|m?|?|??a|?|??| mamma111111?|m?a|?|??a|?|m?|?|??|?2|m?|?2(|m|?||)?4.
mamamm
优质文档
相关推荐: