18.(1)如图,已知在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBE的平分线于N.试判定线段MD与MN的大小关系;
(2)若将上述条件中的“M是AB的中点”改为“M是AB上或AB延长线上任意一点”,其余条件不变.试问(1)中的结论还成立吗?如果成立,请证明;如果不成立,请说明理由.
19.如图,在△ABC中,∠A=90°,D是AC上的一点,BD=DC,P是BC上的任一点,PE⊥BD,PF⊥AC,E、F为垂足.求证:PE+PF=AB.
20..如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.
(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过 后,点P与点Q第一次在△ABC的 边上相遇?(在横线上直接写出答案,不必书写解题过程)
21、已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD; (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.
22.().如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE;②AF⊥DE.(不需要证明) (1)如图2,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF.则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)
(2)如图3,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
23、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D. 求证:(1)AE=CD; (2)若AC=12 cm,求BD的长.
24、.已知BE,CF是△ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系 QA
F
DE P
BC
25、如图,AD//BC,AD=BC,AE⊥AD,AF⊥AB,且AE=AD,AF=AB,求证:AC=EF
D CE
BA
F
26、直线CD经过?BCA的顶点C,CA=CB.E、F分别是直线CD上两点,且?BEC??CFA???.
(1)若直线CD经过?BCA的内部,且E、F在射线CD上,请解决下面两个问题:
ooBE?AF?BCA?90,???90①如图1,若,则EF (填“?”,“?”或“?”号);
②如图2,若0??BCA?180,若使①中的结论仍然成立,则 ??与?BCA 应满足的关系是 ; (2)如图3,若直线CD经过?BCA的外部,????BCA,请探究EF、与BE、AF三条线段的数量关系,并给予证明.
B
B B
E A F D F D E E
C C
F A C A D
图1 图2 图3
27、如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
28、.如图所示,已知△ABC中,AB=AC,D是CB延长线上一点,∠ADB=60°,E是AD上一点,且DE=DB,求证:AC=BE+BC
A
E
DC B
29、在△ABC中,BD=DC,ED⊥DF.求证:BE+CF>EF.
oo
相关推荐: