第一范文网 - 专业文章范例文档资料分享平台

2018中考数学:二次函数的图像与常见几何图形

来源:用户分享 时间:2025/8/3 13:36:07 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

二次函数的图像与常见几何图形

专题一:二次函数的图像与圆

1. 如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.

(1)求点P的坐标;

(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.

2. 如图,在平面直角坐标系xOy中,将二次函数y=x2-1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.

(1)求N的函数表达式;

(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;

(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.

第2题图

3. 如图,已知抛物线y=ax+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.

(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4); ①求此抛物线的表达式与点D的坐标;

②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;

(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.

2

专题二:二次函数与相似三角形

1. 已知二次函数y=ax2-8ax(a<0)的图像与x轴的正半轴交于点A,它的顶点为P.点C为

y轴正半轴上一点,直线AC与该图像的另一交点为B,与过点P且垂直于x轴的直线交于点D,且CB:AB=1:7.

(1)求点A的坐标及点C的坐标(用含a的代数式表示);

(2)连接BP,若△BDP与△AOC相似(点O为原点),求此二次函数的关系式.

2. (2014,无锡市)如图,二次函数y=ax+bx(a<0)的图象过坐标原点O,与x轴的负 半轴交于点A,过A点的直线与y轴交于B,与二次函数的图象交于另一点C,且C点的横坐标为﹣1,AC:BC=3:1. (1)求点A的坐标; (2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.

2

y O x

3. 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(-1,1)、B(2,2).过

点B作BC∥x轴,交抛物线于点C,交y轴于点D. (1)求此抛物线对应的函数表达式及点C的坐标;

7

(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;

2

(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边....OB对应)的点N的坐标.

4. 如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线

的对称轴DF与BC相交于点E,与x轴相交于点F. (1)求线段DE的长;

(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;

(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.

5. (2012,南通市中考题)如图,在平面直角坐标系xOy中,经过点A(0,-4)的抛物线 1

y=x2+bx+c与x轴相交于点B(-2,0) 和C。

2

(1)求抛物线的解析式;

1 7

(2)将抛物线y=x2+bx+c向上平移个单位长度、再向左平移m(m>0)个单位长

22度,得到新抛物线.若新抛物线的顶点P在△ABC内,求m的取值范围; (3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.

2018中考数学:二次函数的图像与常见几何图形.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6v1cu8s0zu4qfr01784a35m4y31ezc01549_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top