相似三角形的判定
一、教学目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.
2.掌握三角形相似的判定条件(AA)。
3.会运用“两个角对应相等的三角形相似”判断常见图形中的三角形相似,并应用判定三解决简单的问题. 二、教学重点
1.相似三角形的判定三的应用。与三角形相似的预备定理及平行线平分线段成比例定理和推论.
2.认识直角三角形斜边上的高所分的两个三角形与原三角形相似 三、教学难点
1.相似三角形的判定三的证明。 2.相似三角形的判定三的应用. 3.难点的突破方法
(1)对于判定三的证明,参考判定一和判定二的证明思路,把较小的三角形移到另一个三角形的内的思路,即利用已有条件构造全等三角形。
(2)利用圆中的相似三角形和直角三角形斜边上的高构成的相似三角形的展示,让学生形成应用判定三的意识,即:如果两个三角形具有公共角或对顶角,或两个三角形是直角三角形,那么只要再有一个角对应相等就会相似。 四、教学过程 (一)、引入
我们学习了哪几种判定三角形相似的方法? 定义
预备定理(由平行得到相似) 相似三角形的判定一 相似三角形的判定二
探究:如图:△ABC和△ A′B′C′,当它们具备什么样的条件时,能够判定它们相似? (通过探究,进一步巩固判定一、二) 判定三的引入:对比思考
观察下表中全等三角形和相似三角形的判定方法,对比之后进行思考:全等三角形中的ASA和AAS应该对应相似中的什么方法呢? 在学生猜想出AA后提出问题:
A
A'
C
B
B'
C'
相关推荐: