第一范文网 - 专业文章范例文档资料分享平台

2020高考数学(文科)历年高考题汇总专题复习:第五章 数 列(含两年高考一年模拟)

来源:用户分享 时间:2025/7/13 2:08:53 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

n(n+1)

1+2+3+…+n2n

3.B [∵an===2,

n+1n+1

?11?14?-?∴bn===4?n?. n+1anan+1n(n+1)??

?11111?4n

?1-+-+…+-?故Sn=b1+b2+…+bn=4?.] 223nn+1?=

??n+1

4.D [∵an=2n+λ,∴a1=2+λ,

n(a1+an)n(2+λ+2n+λ)

2

∴Sn===n+(λ+1)n, 22又因为n∈N*,

由二次函数的性质和n∈N*,

可知-2<7.5,即可满足数列{Sn}为递增数列, 解不等式可得λ>-16.故选D.]

5.C [由题意可知,△OA1B1∽△OA2B2, S△OA1B1?OA1?21S△OA1B11∴=?OA?=4,∴SABBA=3,

1122S△OA2B2?2?同理△OA1B1∽△OA9B9,

S△OA1B1?OA1?21

∴==?OA??OA9=5,即a9=5.] S△OA9B91+3×8?9?

11?n11???-6. [an==3??,Sn=a13n-23n+13n+1(3n-2)(3n+1)??

λ+1

11111?1?1?1??1-+-+…+???-1-+a2+…+an=3?447=?3??=3n-23n+13n+1????n

.] 3n+1

an-1111

7.11 [an+1=a=1-a,∵a1=2,∴a2=1-a=-1,a3=1

n

n

1

111

-a=2,a4=1-a=2,故{an}为周期为3的数列,即a1=a3n+1,a2

23=a3n+2,a3=a3n+3,故a1+a2+a3+…+a22=(a1+a2+a3)·7+a22=11.]

8.2 [记此牧羊人通过第1个关口前、通过第2个关口前、……、通过第4个关口前剩下的羊的只数组成数列{an}(n=1,2,3,4),

111

则由题意得a2=2a1+1,a3=2a2+1,a4=2a3+1, 1

而2a4+1=2,解得a4=2,因此得a3=2,…,a1=2.]

9.3 [1,1,2,3,5,8,13,…,除以4得的余数分别为1,1,2,3,1,0,1,1,2,3,1,0,…,即新数列{bn}是周期为6的周期数列,b2 014=b235×6+3=b3=3,所以第2 014项的值是3.]

10.解 (1)由an+1=2Sn+1① 得an=2Sn-1+1②,

①-②得an+1-an=2(Sn-Sn-1),

∴an+1=3an(n≥2),又a2=3,a1=1也满足上式, ∴an=3n-1;b5-b3=2d=6,∴d=3. ∴bn=3+(n-3)·3=3n-6.

(2)Sa1(1-qn)1-3n3n-1n=1-q=1-3

=2,

∴??3n-11?

?2

+2??k≥3n-6,对n∈N*恒成立, ∴k≥6n-12

3n对n∈N*恒成立,

令c3n-63n-63n-9-2n+7

n=3n,cn-cn-1=3n-3n-1=3n-1,当c1

n>cn-1,当n≥4时,cn<cn-1,(cn)max=c3=9,

所以实数k的取值范围是??2?

?9,+∞??

.

n≤3时,

2020高考数学(文科)历年高考题汇总专题复习:第五章 数 列(含两年高考一年模拟).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c70vd40ly2r8c83h0epna2cg5h8ins2016e0_8.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top