第一范文网 - 专业文章范例文档资料分享平台

吉林省吉林普通中学2017届高三上学期第一次调研数学试卷(理科)Word版含解析

来源:用户分享 时间:2025/7/18 21:41:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

A. B.

C. D.

【考点】函数的图象.

【分析】根据函数图象的交点的个数就是方程的解的个数,也就是y=0,图象与x轴的交点的个数,排除BC,再取特殊值,排除D

【解答】解:分别画出函数f(x)=2x(红色曲线)和g(x)=x2(蓝色曲线)的图象,如图所示,

由图可知,f(x)与g(x)有3个交点, 所以y=2x﹣x2=0,有3个解,

即函数y=2x﹣x2的图象与x轴由三个交点,故排除B,C, 当x=﹣3时,y=2﹣3﹣(﹣3)2<0,故排除D 故选:A

【点评】本题主要考查了函数图象的问题,关键是理解函数图象的交点和方程的

解得个数的关系,排除是解决选择题的常用方法,属于中档题

10.在△ABC中,己知∠BAC=90°,AB=6,若D点在斜边BC上,CD=2DB,则?

的值为( )

A.48 B.24 C.12 D.6 【考点】平面向量数量积的运算. 【分析】根据CD=2DB,得到BD=BC,即利用数量积的定义进行求值即可. 【解答】解:∵CD=2DB, ∴BD=BC,即∵∴

=

=

=?(

+=

, =

)=

+

=

+,

=

,然后利用平面向量的关系,

∵∠BAC=90°, ∴AB⊥AC,即∴

=0,

=×62=24.

故选B.

【点评】本题主要考查数量积的应用,利用数量积的定义确定向量长度和夹角是夹角本题的关键.

11.已知{an}为等差数列,{bn}为等比数列,其公比q≠1且bi>0(i=1,2,…,n),若a1=b1,a11=b11,则( ) A.a6>b6 B.a6=b6

C.a6<b6 D.a6<b6或a6>b6

【考点】等比数列的通项公式;等差数列的通项公式. 【分析】由基本不等式可得2a6=a1+a11=b1+b11≥2得答案.

【解答】解:由题意可得四个正数满足a1=b1,a11=b11, 由等差数列和等比数列的性质可得a1+a11=2a6,b1b11=b62,

=2b6,由等号取不到可

由基本不等式可得2a6=a1+a11=b1+b11≥2又公比q≠1,故b1≠b11,上式取不到等号, ∴2a6>2b6,即a6>b6. 故选:A.

=2b6,

【点评】本题考查等差数列和等比数列的性质,涉及基本不等式的应用,属基础题.

12.函数y=cosxsin2x的最小值为( ) A.﹣1 B.﹣

C.﹣2 D.﹣

【考点】三角函数的最值.

【分析】由三角函数公式化简可得y=﹣2sin3x+2sinx,令sinx=t,则t∈[﹣1,1],导数法y=﹣2t3+2t在[﹣1,1]的最小值可得. 【解答】解:由三角函数公式化简可得y=cosxsin2x =cosx?2sinxcosx=2sinxcos2x =2sinx(1﹣sin2x) =﹣2sin3x+2sinx,

令sinx=t,则t∈[﹣1,1],

对y=﹣2t3+2t求导数可得y′=﹣6t2+2, 令y′=﹣6t2+2≥0可得﹣∴y=﹣2t3+2t在[﹣1,﹣在[﹣

≤t≤

]单调递减,

,1]单调递减,

]单调递增,在[时,y=﹣

∴当t=﹣

当t=1时,y=0>﹣∴原函数的最小值为﹣故选:B.

【点评】本题考查三角函数的最值,涉及导数法求三次函数在闭区间的最值,属中档题.

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.

13.已知两个单位向量

的夹角为

,则

= .

【考点】平面向量数量积的运算. 【分析】由已知求得

,然后求出

,<

=

=.

,开方后得答案. >=

【解答】解:由题意可知:∴∴∴故答案为:

【点评】本题考查平面向量的数量积运算,考查了向量模的求法,是中档题.

14.在△ABC中,角A,B,C所对边分别为a,b,c,若则角C= 60°或120° . 【考点】正弦定理.

【分析】由题意和正弦定理求出sinC的值,由内角的范围和特殊角的三角函数值求出角C的值. 【解答】解:由题意知,由正弦定理得,则sinC=

=

=, ,

又0°<C<180°,且c>b, 则C=60°或120°, 故答案为:60°或120°.

【点评】本题考查了正弦定理的应用,注意内角的范围和边角关系,属于基础题.

吉林省吉林普通中学2017届高三上学期第一次调研数学试卷(理科)Word版含解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c71mvp7f4l5036aw5tvxo0daes3y30z00x2a_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top