A.41×107 B.4.1×108 C.4.1×109 D.0.41×109
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将410000000用科学记数法表示为:4.1×108. 故选:B.
【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(3分)(2016?广安)下列图形中既是轴对称图形又是中心对称图形的是( )
A.
等边三角形 B.
平行四边行 C.
正五边形 圆
D.
【分析】根据中心对称图形与轴对称图形的概念进行判断即可. 【解答】解:等边三角形是轴对称图形不是中心对称图形; 平行四边形不是轴对称图形是中心对称图形; 正五边形是轴对称图形不是中心对称图形; 圆是轴对称图形又是中心对称图形, 故选:D.
第9页(共32页)
【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5.(3分)(2016?广安)函数y=的是( ) A.
D.
B.
中自变量x的取值范围在数轴上表示正确
C.
【分析】根据负数没有平方根求出x的范围,表示在数轴上即可. 【解答】解:由函数y=解得:x≥﹣2,
表示在数轴上,如图所示:
,得到3x+6≥0,
故选A
【点评】此题考查了在数轴上表示不等式的解集,以及函数自变量的取值范围,熟练掌握平方根定义是解本题的关键.
6.(3分)(2016?广安)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是( ) A.7
B.10 C.35 D.70
【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入【解答】解:∵一个正n边形的每个内角为144°, ∴144n=180×(n﹣2),解得:n=10. 这个正n边形的所有对角线的条数是:故选C.
【点评】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内
第10页(共32页)
中即可得出结论.
==35.
角和公式求出多边形边的条数是关键.
7.(3分)(2016?广安)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图: 编号 1 2 3 4 5 方差 平均成绩 得分 38 34 ■ 37 40 ■ 37 那么被遮盖的两个数据依次是( ) A.35,2 B.36,4 C.35,3 D.36,3
【分析】根据平均数的计算公式先求出编号3的得分,再根据方差公式进行计算即可得出答案.
【解答】解:∵这组数据的平均数是37,
∴编号3的得分是:37×5﹣(38+34+37+40)=36;
被遮盖的方差是:[(38﹣37)2+(34﹣37)2+(36﹣37)2+(37﹣37)2+(40﹣37)2]=4; 故选B.
【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
8.(3分)(2016?广安)下列说法: ①三角形的三条高一定都在三角形内 ②有一个角是直角的四边形是矩形 ③有一组邻边相等的平行四边形是菱形 ④两边及一角对应相等的两个三角形全等
⑤一组对边平行,另一组对边相等的四边形是平行四边形 其中正确的个数有( ) A.1个 B.2个 C.3个 D.4个
【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形
第11页(共32页)
的判定方法、平行四边形的判定方法即可解决问题.
【解答】解:①错误,理由:钝角三角形有两条高在三角形外.
②错误,理由:有一个角是直角的四边形不一定是矩形,有三个角是直角的四边形是矩形.
③正确,有一组邻边相等的平行四边形是菱形.
④错误,理由两边及一角对应相等的两个三角形不一定全等.
⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形. 正确的只有③, 故选A.
【点评】本题考查三角形高,菱形、矩形、平行四边形的判定等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.
9.(3分)(2016?广安)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=( )
A.2π B.π C.π D.π 【分析】根据垂径定理求得CE=ED=2
,然后由圆周角定理知∠DOE=60°,然后
通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S
扇形ODB
﹣S△DOE+S△BEC.
【解答】解:如图,假设线段CD、AB交于点E, ∵AB是⊙O的直径,弦CD⊥AB, ∴CE=ED=2
,
又∵∠BCD=30°,
∴∠DOE=2∠BCD=60°,∠ODE=30°,
第12页(共32页)
相关推荐: