A.
1 4
2
B.
π 8 C.
1 2
πD.
4y25.已知F是双曲线C:x-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标
3是(1,3).则△APF的面积为 1A.
3
1B.
2
2C.
3
3D.
26.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是
?x?3y?3,?7.设x,y满足约束条件?x?y?1,则z=x+y的最大值为
?y?0,?A.0 8..函数y? B.1 C.2 D.3
sin2x的部分图像大致为
1?cosx
9.已知函数f(x)?lnx?ln(2?x),则 A.f(x)在(0,2)单调递增
B.f(x)在(0,2)单调递减
D.y=f(x)的图像关于点(1,0)对称
和
两个空白框
C.y=f(x)的图像关于直线x=1对称
10.如图是为了求出满足3n?2n?1000的最小偶数n,学|那么在中,可以分别填入
A.A>1000和n=n+1 C.A≤1000和n=n+1
B.A>1000和n=n+2 D.A≤1000和n=n+2
11.△ABC的内角A、B、C的对边分别为a、b、c。已知sinB?sinA(sinC?cosC)?0,
a=2,c=2,则C= A.
π 12 B.
π 6 C.
π 4 D.
π 3x2y212.设A、B是椭圆C:??1长轴的两个端点,若C上存在点M满足∠AMB=120°,
3m则m的取值范围是 A.(0,1]?[9,??) C.(0,1]?[4,??)
B.(0,3]?[9,??) D.(0,3]?[4,??)
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________.
214.曲线y?x?1在点(1,2)处的切线方程为_________________________. xππ15.已知a?(0,),tan α=2,则cos(??)=__________。
4216.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径。若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________。 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:60分。 17.(12分)
记Sn为等比数列?an?的前n项和,已知S2=2,S3=-6. (1)求?an?的通项公式;
(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列。 18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且?BAP??CDP?90?
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,?APD?90?,且四棱锥P-ABCD的体积为积.
8,求该四棱锥的侧面319.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序 零件尺寸 抽取次序 1 9.95 9 2 10.12 10 9.91 3 9.96 11 4 9.96 12 5 10.01 13 9.22 6 9.92 14 7 9.98 15 8 10.04 16 9.95 零件尺寸 10.26 10.13 10.02 10.04 10.05 11611611622xi?9.97,s?经计算得x?(xi?x)?(?xi?16x2)?0.212,??16i?116i?116i?1?(i?8.5)i?1162其中xi为抽取的第i个零件的尺寸,?18.439,?(xi?x)(i?8.5)??2.78,
i?116i?1,2,???,16.
,2,???,16)i(i?1(1)求(xi,)的相关系数r,并回答是否可以认为这一天生产的零件尺
寸不随生产过程的进行而系统地变大或变小(若|r|?0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(x?3s,x?3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,学.是否需对当天的生产过程进行检查?
3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天(ⅱ)在(x?3s,x?生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(xi,yi)(i?1,2,???,n)的相关系数r??(x?x)(y?y)iii?12(x?x)?ii?1n2(y?y)?ii?1nn,
0.008?0.09.
20.(12分)
相关推荐: