-*
老师: 学生: 年级: 日期: 时间: ( ) 课题 目标 重难点 教学内容 1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。对应边的比叫做相似比。 三条平行线截两条直线所得的对应线段的比相等。 2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS”)④两角对应相等(AA) 直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL”)。 相似三角形的基本图形: 判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。 3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。 4.相似三角形的应用:求物体的长或宽或高;求有关面积等。 m n (三)考点精讲 A B a 考点一:平行线分线段成比例 D C b 例1、(2011广东肇庆)如图,已知直线a∥b∥c,直线m、n 与a、b、c分别F c 交于点A、C、E、B、D、F,AC = 4,CE = 6,BD = 3,则BF =( ) E A. 7 B. 7.5 C. 8 D. 8.5 -*
例2(2012?福州) 如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是 ,cosA的值是 .(结果保留根号) 练习: 1.(2011湖南怀化,6,3)如图所示:△ABC中,DE∥BC,AD=5,BD=10,AE=3,则CE的值为( ) A.9 B.6 C.3 D.4 ADEBC 2.(2011山东泰安,15 ,3分)如图,点F是□ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是( ) ..A.EDDFDEEFBCBFBFBC B. C. D. ????EAABBCFBDEBEBEAE 3.(2012?孝感)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是( ) A.5?15?1 B. C.5?1 D.5?1 22DCEF G BAP考点二:相似三角形的判定 例3、(2011湖北荆州)如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有( ) A.1对 B.2对 C.3对 D.4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) -*
A.0种 B. 1种 C. 2种 D. 3种 例5(2012?徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= 角形共有( ) A.1对 1BC.图中相似三4B.2对 C.3对 D.4对 例6(2012?资阳)(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程); (2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程). 练习: 1.(2011江苏无锡,7,3分)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA∶OC = OB∶OD,则下列结论中一定正确的是 ( ) A.①和②相似 B.①和③相似 C.①和④相似 D.②和④相似 A B ① ②④O D ③(第7题) C 2.(2011新疆乌鲁木齐,10,4分)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP?1,点D为AC边上一点若?APD?60?,则CD的长为 A.1 2B.2 3C.3 4D.1 -*
3. (2012?攀枝花)如图,△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,BC、DE交于点O.则下列四个结论中,①∠1=∠2;②BC=DE;③△ABD∽△ACE;④A、O、C、E四点在同一个圆上,一定成立的有( ) A.1个 B.2个 C.3个 D.4个 4. (2012?义乌市)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1. (1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数; (2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积; (3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值. 考点三:相似三角形的性质 例7、(2010山东烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( ) A.AB2=BC·BD B.AB2=AC·BD C.AB·AD=BD·BC D.AB·AD=AD·CD 例8、(2011浙江嘉兴)如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为( ) (A)23 (C)43 (B)33 (D)63 B A A D C DB(例5) EC-*
例9(2012?重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为 . 练习 1.(2011青海西宁,10,3分)如图6,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°,BD=3,CE=2,则△ABC的边长为 A.9 B.12 C.16 D.18 A D O B E G C F 2.(2011四川雅安,9,3分)如图,D、E、F分别为△ABC三边的中点,则下列说法中不正确的为( ) A.△ADE∽△ABC B.S△ABF?S△AFC C.S△ADE?1S△ABC D.DF=EF 43.(2011四川内江,加试2,6分)如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为S,则四边形BOGC的面积= . 4.(2011辽宁丹东,16,3分)已知:如图,DE是△ABC的中位线,点P是DE的中点,CP的延长线交AB于点Q,那么S?DPQ:S?ABC?______________. AQDBPEC 考点四 位似 例10(2012?玉林)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=32,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( )
相关推荐: