1£®ÇóP?Q?RµÄÎöÈ¡·¶Ê½£¬ºÏÈ¡·¶Ê½¡¢Ö÷ÎöÈ¡·¶Ê½£¬Ö÷ºÏÈ¡·¶Ê½£® P?Q?R??P?Q?R£¨ÎöÈ¡·¶Ê½£©
?£¨?P?Q?R£©£¨ºÏÈ¡·¶Ê½£©
ÕæÖµ±í£º P 0 Q 0 R 0 ?P Ôʽ 1 ¼«Ð¡Ïî ?P??P??¼«´óÏî 1 P 0 0 0 1 1 1 1
Ö÷ÎöÈ¡·¶Ê½£¨?P??P??P£©?£¨?P??Q?R£©?£¨?P?Q??R£©?£¨?P?Q?R£©?£¨P??Q?R£©?£¨P?Q??R£©?£¨P?Q?R£© Ö÷ºÏÈ¡·¶Ê½£¨?P?Q?R£©
2£®ÇóÃüÌ⹫ʽ(P?Q)?(R?Q)µÄÖ÷ÎöÈ¡·¶Ê½¡¢Ö÷ºÏÈ¡·¶Ê½£® ÕæÖµ±í£º
0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 ?P??Q?R ?P?Q??R ?P?Q?R ? P??Q?R P?Q??R P?Q?R P?Q?R
P Q R ?R?Q Ôʽ ¼«Ð¡Ïî ¼«´óÏî £¨P?Q£© 0 0 0 1 0 1 ?P??P?? P 0 0 0 1 1 1 1
Ö÷ÎöÈ¡·¶Ê½£¨?P??P??P£©?£¨?P??Q?R£©?£¨?P?Q??R£©?£¨?P?Q?R£©?£¨P??Q?R£©?£¨P?Q??R£©?£¨P?Q?R£© Ö÷ºÏÈ¡·¶Ê½£¨?P?Q?R£©
3£®Éèν´Ê¹«Ê½(?x)(P(x,y)?(?z)Q(y,x,z))?(?y)R(y,z)£® £¨1£©ÊÔд³öÁ¿´ÊµÄϽÓò£»
£¨2£©Ö¸³ö¸Ã¹«Ê½µÄ×ÔÓɱäÔªºÍÔ¼Êø±äÔª£® ´ð£º£¨1£©?xµÄϽÓòΪP£¨x,y£©??zQ(x,y,z)
?zµÄϽÓòΪQ(x,y,z)
0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 ?P??Q?R ?P?Q??R ?P?Q?R ? P??Q?R P?Q??R P?Q?R P?Q?R ?yµÄϽÓòΪR(y,z)
(2) Ô¼Êø±äԪΪ
P£¨x,y£©??zQ(x,y,z)ÖеÄx Q(x,y,z) ÖÐµÄ z R(y,z)ÖеÄy ×ÔÓɱäԪΪ
P£¨x,y£©??zQ(x,y,z)ÖеÄy R(y,z)ÖеÄz
4£®Éè¸öÌåÓòΪD={a1, a2}£¬Çóν´Ê¹«Ê½?y?xP(x,y)ÏûÈ¥Á¿´ÊºóµÄµÈֵʽ£»
´ð£ºÎ½´Ê¹«Ê½?y?xP(x,y)ÏûÈ¥Á¿´ÊºóµÄµÈֵʽΪ
=?xP£¨x,a1£©??xP£¨x,a2£©
=P (a1, a2£©?P (a1, a2£©?(P(a1, a2£©?P (a1, a2))
Îå¡¢Ö¤Ã÷Ìâ
1£®ÊÔÖ¤Ã÷ (P?(Q??R))??P?QÓë? (P??Q)µÈ¼Û£® Ö¤Ã÷£º(P?(Q??R))??P?Q
??P?(Q??R))??P?Q ??P?Q ??£¨P??Q£©
2£®ÊÔÖ¤Ã÷?(A??B)?(?B?C)??C??A
Ö¤Ã÷£º?(A??B)?(?B?C)??C
?(?A?B)?(?B?C)??C
?(?A?B)?(?B??C)?(C??C) ?(?A?B)?((?B??C)???0) ?(?A?B)?(?B??C)
?(?A? (?B??C))?(B?(?B??C)) ?(?A? (?B??C))?0 ??A? (?B??C) ??(A?B?C)
¹ÊÓÉ×ó±ß²»¿ÉÍÆ³öÓÒ±ß?A
Ïà¹ØÍÆ¼ö£º