【分析】连OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,在Rt△OA1P1中,OA1=1,OP1=2,由勾股定理得出A1P1==
,……,得出P1的坐标为( 1,),……,得出规律,即可得出结果.
【解答】解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示: 在Rt△OA1P1中,OA1=1,OP1=2, ∴A1P1=同理:A2P2=∴P1的坐标为( 1,
==
=
,A3P3=
,
=
,……, ),P3的坐标为(3,
),即(n,
),……, )
=
,同理:A2P2=
,A3P3
),P2的坐标为( 2,),P3的坐标为(3,
),P2的坐标为( 2,
…按照此规律可得点Pn的坐标是(n,故答案为:(n,
).
【点评】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了勾股定理;由题意得出规律是解题的关键.
三、解答题(本题共7小题,共66分。解答应写出文字说明、证明过程或推演步骤。)
19.(5分)己知关于x,y的二元一次方程组的解满足x>y,求k的取值范围.
【分析】先用加减法求得x﹣y的值(用含k的式子表示),然后再列不等式求解即可. 【解答】解:
①﹣②得:x﹣y=5﹣k, ∵x>y, ∴x﹣y>0. ∴5﹣k>0. 解得:k<5.
【点评】本题主要考查的是二元一次方程组的解,求得x﹣y的值(用含k的式子表示)是解题的关键.
20.(6分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:
;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造
为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)
【分析】根据题意和锐角三角函数可以求得AE的长,进而得到CE的长,再根据锐角三角函数可以得到ED的长,最后用勾股定理即可求得CD的长. 【解答】解:∵∠AEB=90°,AB=200,坡度为1:∴tan∠ABE=∴∠ABE=30°, ∴AE=AB=100, ∵AC=20, ∴CE=80,
∵∠CED=90°,斜坡CD的坡度为1:4, ∴
,
,
,
即,
解得,ED=320, ∴CD=
答:斜坡CD的长是
=
米, 米.
【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.
21.(9分)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:
次数 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次 数字
3
5
2
3
3
4
3
5
(1)求前8次的指针所指数字的平均数.
(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)
【分析】(1)根据平均数的定义求解可得;
(2)由这10次的指针所指数字的平均数不小于3.3,且不大于3.5知后两次指正所指数字和要满足不小于5且不大于7,再画树状图求解可得.
【解答】解:(1)前8次的指针所指数字的平均数为×(3+5+2+3+3+4+3+5)=3.5; (2)∵这10次的指针所指数字的平均数不小于3.3,且不大于3.5, ∴后两次指正所指数字和要满足不小于5且不大于7, 画树状图如下:
由树状图知共有12种等可能结果,其中符合条件的有8种结果, 所以此结果的概率为
=.
【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.
22.(10分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M. (1)求证:△AHF为等腰直角三角形. (2)若AB=3,EC=5,求EM的长.
【分析】(1)通过证明四边形AHGD是平行四边形,可得AH=DG,AD=HG=CD,由“SAS”可证△DCG≌△HGF,可得DG=HF,∠HFG=∠HGD,可证AH⊥HF,AH=HF,即可得结论;
(2)由题意可得DE=2,由平行线分线段成比例可得
=
,即可求EM的长.
【解答】证明:(1)∵四边形ABCD,四边形ECGF都是正方形 ∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90° ∵AD∥BC,AH∥DG ∴四边形AHGD是平行四边形 ∴AH=DG,AD=HG=CD
∵CD=HG,∠ECG=∠CGF=90°,FG=CG ∴△DCG≌△HGF(SAS) ∴DG=HF,∠HFG=∠HGD ∴AH=HF,
∵∠HGD+∠DGF=90° ∴∠HFG+∠DGF=90° ∴DG⊥HF,且AH∥DG
相关推荐: