111当n≥3时,(1?)(1?2)...(1?n)?(2,e)
222111∵m?N*,(1?)(1?2)...(1?n)?m,
222∴m的最小值为3.
22.⑴ 将参数方程转化为一般方程
l1:y?k?x?2? ……① l2:y?1?x?2? ……② k①?②消k可得:x2?y2?4 即P的轨迹方程为x2?y2?4; ⑵将参数方程转化为一般方程
l3:x?y?2?0 ……③
??x?y?2?0l联立曲线C和3?2 2x?y?4???32?x??2解得?
2?y????2?x??cos?由?解得??5 ?y??sin?即M的极半径是5.
??3,x≤?1?23.⑴ f?x??|x?1|?|x?2|可等价为f?x???2x?1,?1?x?2.由f?x?≥1可得:
?3,x≥2?①当x≤?1时显然不满足题意;
②当?1?x?2时,2x?1≥1,解得x≥1;
③当x≥2时,f?x??3≥1恒成立.综上,f?x??1的解集为?x|x≥1?.
22⑵ 不等式f?x?≥x?x?m等价为f?x??x?x≥m,
2令g?x??f?x??x?x,则g?x?≥m解集非空只需要??g?x???max≥m.
13
??x2?x?3,x≤?1?2而g?x????x?3x?1,?1?x?2.
??x2?x?3,x≥2?①当x≤?1时,??g?x???max?g??1???3?1?1??5; ②当?1?x?2时,??g?x???max35?3??3??g???????3??1?;
24?2??2?22③当x≥2时,??g?x????g?2???2?2?3?1.
max综上,??g?x???5max?4,故m?54.
14
相关推荐: