第一范文网 - 专业文章范例文档资料分享平台

职高数学(基础模块)下教案

来源:用户分享 时间:2025/7/10 18:49:08 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

教 学 过 程 某工厂今年的产值是1000万元,如果通过技术改造,在今后的5年内,每年的产值都比上一年增加10%,那么今年及教师 行为 播放 课件 学生 行为 观看 课件 思考 自我 分析 思考 理解 记忆 教学 意图 学生自然的走向知识点 时间 5 以后5年的产值构成下面的一个数列(单位:万元): 质疑 1000,1000?1.1,1000?1.12,1000?1.13,1000?1.14,1000?1.15. 引导 分析 总结 不难发现,从第2项开始,数列中的各项都是其前一项的1.1倍,即从第2项开始,每一项与它的前一项的比都等于1.1. *动脑思考 探索新知 【新知识】 带领 学生 分析 引导 式启 发学 生得 出结 果 10 如果一个数列从第2项开始,每一项与它前一项的比都等归纳 于同一个常数,那么这个数列叫做等比数列.这个常数叫做这个等比数列的公比,一般用字母q来表示. 由定义知,若?an?为等比数列,q为公比,则a1与q均不a为零,且有n?1?q,即 an 仔细 分析 讲解 关键 词语 (6.5) an?1?an?q. *巩固知识 典型例题 例1 在等比数列{an}中,a1?5,q?3,求a2、a3、a4、a5. 说明 强调 引领 讲解 说明 观察 思考 主动 求解 通过例题进一步领会 15 解 a2?a1?q?5?3?15, a3?a2?q?15?3?45,a4?a3?q?45?3?135,a5?a4?q?135?3?405.【试一试】

你能很快地写出这个数列的第9项吗? - 17 -

教 学 过 程 *运用知识 强化练习 练习6.3.1 教师 行为 学生 行为 教学 意图 时间 动手 求解 及时 了解 学生 知识 掌握 得情 况 25 30 1.在等比数列?an?中,a3??6, q?2,试写出a4、提问 a6. 巡视 指导 2.写出等比数列3,?6,12,?24,……的第5项与第6项. *创设情境 兴趣导入 如何写出一个等比数列的通项公式呢? 质疑 引导 分析 思考 参与 分析 思考 归纳 理解 记忆 学生 自然 的走 向知 识点 带领 学生 总结 问题 得到 等差数列通项公式 引导*动脑思考 探索新知 与等差数列相类似,我们通过观察等比数列各项之间的关系,分析、探求规律. 设等比数列?an?的公比为q,则 总结 归纳 仔细 分析 讲解 关键 词语 35 a2?a1?q, a3?a2?q??a1?q??q?a1?q2,a4?a3?q??a1?q2??q?a1?q3, …… 【说明】 a1?a1?1?a1?q 依此类推,得到等比数列的通项公式: (6.6) 知道了等比数列?an?中的a1和q,利用公式(6.6),可以直接计算出数列的任意一项.

- 18 -

0

教 学 过 程 【想一想】 等比数列的通项公式中,共有四个量:an、a1、n和q,只要知道了其中的任意三个量,就可以求出另外的一个量. 针对不同情况,应该分别采用什么样的计算方法? *巩固知识 典型例题 例2求等比数列 教师 行为 学生 行为 教学 意图 启发学生思考求解 时间 说明 强调 观察 思考 主动 求解 观察 思考 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 45 ?1,的第10项. 111,?,,? 248 引领 讲解 说明 1解 由于 a1??1,q??, 2故,数列的通项公式为 an?a1?qn?1?1???1?????2?n?1??1?(?1)n?1?1?????2?n?11?(?1)?n?1, 2n 引领 分析 强调 含义 所以 a10?(?1)101210?1?1. 5121例3 在等比数列?an?中,a5??1,a8??,求a13. 8解 由a5??1,a8??有 18?1?a1?q, (1) 41??a1?q7, (2) 8(2)式的两边分别除以(1)式的两边,得 1?q3, 8由此得 1q?. 2

- 19 -

教 学 过 程 将q?教师 行为 说明 学生 行为 领会 思考 求解 观察 思考 求解 教学 意图 点 反复 强调 时间 1代人(1),得 2a1??24, 所以,数列的通项公式为 1an??24?()n?1. 2故 1?1?. a13?a1?q??2?????2?8??256?2?12412【注意】 本例题求解过程中,通过两式相除求出公比的方法是研究等比数列问题的常用方法. 【想一想】 在等比数列?an?中,a7?11, q?.求a3时,你有没有93比较简单的方法? 【知识巩固】 例4 小明、小刚和小强进行钓鱼比赛,他们三人钓鱼的数量恰好组成一个等比数列.已知他们三人一共钓了14条鱼,而每个人钓鱼数量的积为64. 并且知道,小强钓的鱼最多,小明钓的鱼最少,问他们三人各钓了多少条鱼? 分析 知道三个数构成等比数列,并且知道这三个数的积,可以将这三个数设为而解决问题. 解 设小明、小刚和小强钓鱼的数量分别为a,a,aq,这样可以方便地求出a,从引领 q分析 a,a,aq.则 强调 q含义 - 20 -

搜索更多关于: 职高数学(基础模块)下教案 的文档
职高数学(基础模块)下教案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7e4ug18ktg4oweh0q68m0sr9z0p08p00nyy_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top