第一范文网 - 专业文章范例文档资料分享平台

2019年中考数学压轴题专项培优训练:二次函数综合题

来源:用户分享 时间:2025/8/9 2:07:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴M(6,4);

当CM′⊥AB时,△MEC与△AOE相似,由由面积法可得M′x=, ∴M′(,).

∴当△MEC与△AOE相似时,点M的坐标为(6,4)或(,).

=,CE=3可得CM′=

,EM′=

6.解:(1)∵OB=3OA=3,

∴点A的坐标为(﹣1,0),点B的坐标为(3,0). 在Rt△AOE中,OB=3,BE=BC=5,∠BOE=90°, ∴OE=

=4,

∴点E的坐标为(0,﹣4).

将A(﹣1,0),B(3,0),E(0,﹣4)代入y=ax2+bx+c,得:

,解得:,

∴抛物线的解析式为y=x2﹣x﹣4. (2)①过点F作FM⊥x轴于点M,

在Rt△BOE中,OB=3,OE=4,∠BOE=90°, ∴BE=

=5,OF=

∵∠MOF=∠FOB,∠OMF=∠OFB=90°, ∴△MOF∽△FOB,

∴=,即=,

∴OM=∴MF=

, ,﹣

).

∴点F的坐标为(

设直线BE的解析式为y=kx+d(k≠0), 将B(3,0),E(0,﹣4)代入y=kx+d,得:

,解得:

∴直线BE的解析式为y=x﹣4. 设点P的坐标为(m, m2﹣m﹣4). ∵PQ∥OF, ∴分两种情况考虑:

(i)当四边形POFQ为平行四边形时,∵O(0,0),F(﹣4),

∴点Q的坐标为(m+∵点Q在直线BE上, ∴m2﹣m﹣

=(m+

)﹣4,

, m2﹣m﹣

).

,﹣

),P(m, m2﹣m整理,得:m2﹣3m﹣3=0, 解得:m1=∴点P的横坐标为

,m2=

, ;

,﹣

),P(m, m2﹣m(ii)当四边形PQOF为平行四边形时,∵O(0,0),F(﹣4),

∴点Q的坐标为(m﹣∵点Q在直线BE上,

, m2﹣m﹣

).

∴m2﹣m﹣=(m﹣)﹣4,

整理,得:m2﹣3m+3=0,

∵△=(﹣3)2﹣4×1×3=﹣3<0, ∴此时方程无解. 综上所述:点P的横坐标为

②作点B关于y轴的对称点B′,连接B′E,过点O作AF1∥B′E交BE于点F1,过点O作ON⊥BE于点N,作点F1关于点N的对称点F2,则点F1,F2即为所求,如图③所示. ∵点B的坐标为(3,0), ∴点B′的坐标为(﹣3,0), ∴直线B′E的解析式为y=﹣x﹣4, ∴直线OF1的解析式为y=﹣x.

联立直线OF1和BE成方程组,得:

解得:,

∴点F1的坐标为(,﹣2). 由①可知,点N的坐标为(∴点F2的坐标为(

,﹣

,﹣).

,﹣

).

),

综上所述:点F的坐标为(,﹣2)或(

7.解:(1)∵﹣3∴(﹣3

<0,根据“横负纵变点”的定义,

,2);

,﹣2)的“横负纵变点”为(﹣3=

,2);

﹣﹣

; ;

故答案为(﹣3

(2)设点M(a,1﹣a), 当a≥0时,M'(a,1﹣a), ∵N(1,1),M′N=∴(1﹣a)2+a2=13, ∴a=3或a=﹣2(舍), ∴M'(3,﹣2);

当a<0时,M'(a,a﹣1), ∵N(1,1),M′N=

, ,

∴(1﹣a)2+(2﹣a)2=13, ∴a=﹣1或a=4(舍), ∴M'(﹣1,﹣2); (3)∵1≤b≤2, ∴0≤b﹣1≤1, ∵

+

+1+1﹣

=2,

∴y=﹣x2+32, 设点P(m,32﹣m2), 当m≥0时,P'(m,32﹣m2), ∵﹣32<y′≤32,

2019年中考数学压轴题专项培优训练:二次函数综合题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7fq666o6ae0zn011oo6h6et871df1c0194k_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top