2014年全国统一高考数学试卷(理科)(新课标Ⅱ)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.
1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=( ) A.{1}
B.{2}
C.{0,1}
D.{1,2}
2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=( ) A.﹣5
B.5
C.﹣4+i ,|﹣|=C.3
D.﹣4﹣i
,则?=( )
D.5
,则AC=( )
D.1
3.(5分)设向量,满足|+|=A.1
B.2
4.(5分)钝角三角形ABC的面积是,AB=1,BC=A.5
B.
C.2
5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8
B.0.75
C.0.6
D.0.45
6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
A.
B. C.
D.
7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=( )
A.4 B.5 C.6 D.7
8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( ) A.0
B.1
C.2
D.3
9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为( )
A.10 B.8 C.3 D.2
10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( ) A.
B.
C.
D.
11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为( ) A.
B.
sin
C.
D.
12.(5分)设函数f(x)=
,若存在f(x)的极值点x0满足x02+[f(x0)]2
<m2,则m的取值范围是( ) A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答) 13.(5分)(x+a)10的展开式中,x7的系数为15,则a= .
14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为 . 15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是 .
16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是 .
三、解答题:解答应写出文字说明,证明过程或验算步骤. 17.(12分)已知数列{an}满足a1=1,an+1=3an+1. (Ⅰ)证明{an+}是等比数列,并求{an}的通项公式; (Ⅱ)证明:
18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=
,求三棱锥E﹣ACD的体积.
+
+…+
<.
19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表: 年份 年份代号t 人均纯收入y 2007 1 2.9 2008 2 3.3 2009 3 3.6 2010 4 4.4 2011 5 4.8 2012 6 5.2 2013 7 5.9 (Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:=,
=﹣
.
20.(12分)设F1,F2分别是C:
+=1(a>b>0)的左,右焦点,M是C
上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N. (1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
相关推荐: