复习资料、知识分享
16.1.1 二次根式
教学内容
二次根式的概念及其运用 教学目标
理解二次根式的概念,并利用a(a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键
1.重点:形如a(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“a(a≥0)”解决具体问题.
教学过程 一、复习引入
(学生活动)请同学们独立完成下列三个课本P2的三个思考题: 二、探索新知
很明显3、10、4,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二6”称为二次根号.
次根式.因此,一般地,我们把形如a(a≥0)?的式子叫做二次根式,“ (学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0,a有意义吗? 老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、
11、x(x>0)、0、42、-2、、
x?yxx?y(x≥0,y?≥0).
分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.
解:二次根式有:2、x(x>0)、0、-2、x?y(x≥0,y≥0);不是二次根式的有:33、14、2、x1. x?y 例2.当x是多少时,3x?1在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,?3x?1才能有意义. 解:由3x-1≥0,得:x≥
1 31
复习资料、知识分享
当x≥
1时,3x?1在实数范围内有意义. 3 三、巩固练习
教材P5练习1、2、3. 四、应用拓展
例3.当x是多少时,2x?3+ 分析:要使2x?3+1在实数范围内有意义? x?111在实数范围内有意义,必须同时满足2x?3中的≥0和中的x+1≠0. x?1x?1 解:依题意,得? 由①得:x≥-
?2x?3?0
?x?1?03 2 由②得:x≠-1 当x≥-
31且x≠-1时,2x?3+在实数范围内有意义.
x?12x?2+5,求
例4(1)已知y=2?x+x的值.(答案:2) y(2)若a?1+b?1=0,求a2004+b2004的值.(答案:
五、归纳小结(学生活动,老师点评) 本节课要掌握:
1.形如a(a≥0)的式子叫做二次根式,“2) 5”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业
1.教材P5 1,2,3,4 2.选用课时作业设计.
第一课时作业设计 一、选择题
1.下列式子中,是二次根式的是( )
A.-7 B.37 C.x D.x 2.下列式子中,不是二次根式的是( ) A.4 B.16 C.8 D.
1 x 3.已知一个正方形的面积是5,那么它的边长是( ) A.5 B.5 C.
1 D.以上皆不对 5 二、填空题
1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根. 三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,?底面应做成正方形,试问底面边长应是多少?
2
复习资料、知识分享
2.当x是多少时,
2x?32
+x在实数范围内有意义? x 3.若3?x+x?3有意义,则x?2=_______.
4.使式子?(x?5)2有意义的未知数x有( )个. A.0 B.1 C.2 D.无数
5.已知a、b为实数,且a?5+210?2a=b+4,求a、b的值.
第一课时作业设计答案: 一、1.A 2.D 3.B
二、1.a(a≥0) 2.a 3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x=5.
3??2x?3?0?x?? 2.依题意得:?,?2
x?0???x?0∴当x>-
2x?33且x≠0时,+x2在实数范围内没有意义.
x23.
1 3 4.B
5.a=5,b=-4
16.1.2 二次根式(2)
教案序号:2 时间:2019年2月16日 星期一 教学内容
1.a(a≥0)是一个非负数; 2.(a)2=a(a≥0). 教学目标
理解a(a≥0)是一个非负数和(a)2=a(a≥0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a≥0);最后运用结论严谨解题. 教学重难点关键
1.重点:a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.
2.难点、关键:用分类思想的方法导出a(a≥0)是一个非负数;?用探究的方法导出(a)2=a(a≥0).
3
复习资料、知识分享
教学过程
一、复习引入 (学生活动)口答 1.什么叫二次根式?
2.当a≥0时,a叫什么?当a<0时,a有意义吗? 老师点评(略). 二、探究新知
议一议:(学生分组讨论,提问解答)
a(a≥0)是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出
a(a≥0)是一个非负数. 做一做:根据算术平方根的意义填空:
(4)2=_______;(2)2=_______;(9)2=______;(3)2=_______;
(1272)=______;()=_______;(0)2=_______. 32 老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4. 同理可得:(2)2=2,(9)2=9,(3)2=3,(121727)=,()=,(0)2=0,所以
3232(a)2=a(a≥0) 例1 计算 1.(72 3252
) 2.(35)2 3.() 4.()
226 分析:我们可以直接利用(a)2=a(a≥0)的结论解题.
解:(323) =,(35)2 =32·(5)2=32·5=45,
2272(7)27525?. ()=,()=222466 三、巩固练习
计算下列各式的值:
(18)2 (922272
) () (0)2 (4)
438(35)2?(53)2
四、应用拓展
例2 计算
4
相关推荐: