初中数学竞赛辅导---代数式的恒等变形专题
例题1:设设f(x)=x5-3x3+2x2+3x+6,计算
1?5?9?
3?7?11???4n-3??f(1)?f(5)?f(9)?4n-1??f(3)?f(7)?f(11)f(4n-3)的值
f(4n-1)解:首先我们将f(x)因式分解:f(x)=?x+2??x4-2x3+x2+3?,再令
x4-2x3+x2+3=?x2+ax+1??x2+bx+3?=x4+?a+b?x3+?ab+4?x2+?3a+b?x+3
?a+b=-2???ab+4=1?a=1,b=-3 所以 f(x)=?x+2??x2+x+1??x2-3x+3? ?3a+b=0?所以
2??xf(x)=x?x+2??x2+x+1??x2-3x+3?=???x-1?+1????x-1?-?x-1?+1?
2332??????????x+1?+1????x+1?-?x+1?+1?=??x-1?+1???x+1?+1?2所以
1?5?9?3?7?11???4n-3??f(1)?f(5)?f(9)?4n-1??f(3)?f(7)?f(11)f(4n-3)
f(4n-1)=
1f(1)?5f(5)?9f(9)3f(3)?7f(7)?11f(11)?4n-3?f(4n-3) ?4n-1?f(4n-1)=3333?4+16+18+110+1??03+1??23+1???????????4n-4??2+1??4+1??6+1??8+1??10+1??12+1?333333?
??4n-2?+1???4n?+1?3+13???4n-2?3+13=
??4n?03+13+1?=1
64n3+1定理1:设an=Axn+Byn(n?N*),则数列?an?满足递推式 an+2=?x+y?an+1-xyan 证明:LHs=?x+y?an+1-xyan=?x+y??Axn+1+Byn+1?-xy?Axn+Byn?=Axn+2+Byn+2 即an+2=?x+y?an+1-xyan这个就称为牛顿等幂公式
注:只要知道a1,a2,那么我们就可以知道a3,a4,a5,a6nn定理2:设an=Axn+By+Cz(n?N)*,则an+3=?x+y+za?其中任何一项
当然针对三元和多元的我们也能得到同样这样完美的式子:
n+2-xyyzx+za?+xy+za?n+1n
证:我们从左边证明
an+3=Axn+3+Byn+3+Czn+3=?x+y+z??Axn+2+Byn+2+Czn+2?-Azxn+2-Bxyn+2-Cyzn+2
-Cxzn+2-Bzyn+2-Ayxn+2=?x+y+z?an+2-xy?Axn+1+Byn+1?-yz?Byn+1+Czn+1?-zx?Axn+1+Czn+1?=?x+y+z?an+2-?xy+yz+xz??Axn+1+Byn+1+Czn+1?+Cxyzn+1+Ayzxn+1+Bzxyn+1 =?x+y+z?an+2-?xy+yz+xz?an+1+xyz?Axn+Byn+Czn? =?x+y+z?an+2-?xy+yz+xz?an+1+xyzan得证
1x12-x10+x6+x4-x0+x-2例:已知x<0,且x-=5,求代数式1210820-2的值
xx-x+x+x-x+x解:对要求的式子变形得(分子分母除以x5):
x7+x-7-?x5+x-5?+x+x-11x12-x10+x6+x4-x0+x-2x-=5?x<0?,求出 = 想方法由1210820-27-75-53-3xx-x+x+x-x+xx+x-?x+x?+?x+x?x+x-1,x3+x-3,x5+x-5,x7+x-7的值即可
1根据上面分析,可考虑递推计算法,令an=xn+x-n,由x-=5,又x<0,得
x1?1?-12-2-21a1=x+x=-?x-?+4x?=-3 , a2=x+x=x+x-2 =7 ??xx??2由定理1:an+2=?x+x-1?an+1-?x?x-1?an=-3an+1-an
所以:a3=-3a2-a1=-3?7-?-3?=-18, a4=-3a3-a2=-3??-18?-7=47
a5=-3a4-a3=-3?47-?-18?=-123 a6=-3a5-a4=?-?3a7=-3a6-a5=-3?322-(-123)=-843
-?123-4 7=322x7+x-7-?x5+x-5?+x+x-1a7-a5+a1-843+123-3241x12-x10+x6+x4-x0+x-2故1210820-2=7-75-5= ==3-3x-x+x+x-x+xx+x-?x+x?+?x+x?a7-a5+a3-843+123-18269例2:已知x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,求x5+y5+z5的值 解:设an=xn+yn+zn,则a1=1,a2=2,a3=3我们由定理2得:
xyz的值 an+3=?x+y+z?an+2-?xy+yz+xz?an+1+xyzan,只要求xy+yz+xz,12因为?x+y+z?=x2+y2+z2+2?xy+yz+xz??xy+yz+xz=-
2又由注意到x3+y3+z3-3xyz=?x+y+z??x2+y2?z2-xy-yz-xz?
1故 xyz=
611111125所以 an+3=an+2+an+1+an 所以 a4=a3+a2+a1=3+?2+=
2626266112511?a5=a4+a3+a2=+?3+?2=6
26626?x5+y5+z5=6
例3:设实数 a,b,c,x,y,z满足
?ax+by+cz=1?ax2+by2+cz2=0??ax3+by3+cz3=2 求 ax7+by7+cz7的值 ?444?ax+by+cz=3?ax5+by5+cz5=4?666?ax+by+cz=5解:设an=axn+byn+czn,由定理2得:an+3=?x+y+z?an+2-?xy+yz+xz?an+1+xyzan 由于我们不需要求x,y,z,故可令,A1?x+y+z,A2=-?xy+yz+xz?,A3=xyz
则 an+3=A1an+2+A2an+1+A3an,由条件得 a1=1,a2=0,a3=2,a4=3,a5=4,a6=5代入递推式可得
8?A=?13?A1+0?A2+2A3=3?81?3A+2A+0?A=4?A=-2?a=a-2a+an ?1?223n+3n+2n+136?4A+3A+2A=5?123?1?A3=6?818116135?a7=a6-2a5+a4=?5-2?4+?3=+=
3636326例题4:实数a,b,c取何值时,等式
ax+by+cz+bx+cy+az+cx+ay+bz=x+y+z对所有x,y,z都成立 解:令
?x,y,z?=?1,1,1?,?0,0,1?,?1,-1,0??a+b+c=1???|a|+|b|+|c|=1|a+b+c|=|a|+|b|+|c|=1,所以a,b,c全部同号?|a-b|+|b-c|+|c-a|=2 ?即ab?0,bc?0,ac?0|a-b|?|a|+|b|,|b-c|?|b|+|c|,|c-a|?|c|+|a|
?2=|a-b|+|b-c|+|c-a|?2?|a|+|b|+|c|?=2……(4)?a?-b??0,b?-c??0,c?-a??0?ab?0,bc?0,ca?0
?ab=bc=ac=0之后不难求出满足(a,b,c)的数组为(0,0,?1),?0,?1,0?,(?1,0,0)
例题5、已知非零实数a,b,c满足 a+b+c=0,计算
?a+b+c222?a+b+c? ??a+b+c??a+b+c??a+b+c?7772333444555令an=an+bn+cn,a1=0,a2=-2?ab+bc+ac?,a3=3abc 11?an+3=?a+b+c?an+2-?ab+bc+ac?an+1+abcan=a2an+1+a3an23111115?a4=a2a2+a3a1=a22,a5=a2a3+a3a2=a2a3
2322361115117a7=a2a5+a3a4=a2?a2a3+a3?a22=a22a3
23263212?72??a2a3?a724912?=?= 所以原式:
a2a3a4a5aa1a25aa602322326?by2+cz2-ayz=0?1、若?cz2+ax2-bxz=0?abc?0?,求
?ax2+by2=cxy?2a3+b3+c3xyyzxz为定值 ?2?:2+2+2也是定值 ?1?:abczxy
相关推荐: