第一范文网 - 专业文章范例文档资料分享平台

车牌识别设计与实现毕业论文

来源:用户分享 时间:2025/11/18 14:29:30 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

重庆理工大学毕业论文 车牌定位与识别的设计与实现

有没有及时缴纳路桥费,是否通过年审和有没有缴清罚款之类的。

(2)交通场所布控管理系统。该系统使用车牌识别技术,自动识别相关车辆,在需要的时候可以实现快速报警功能,不仅能防止机动车被盗,为公安机关进行刑事侦查和破案提供了高科技手段。

(3)高速公路超速监控系统。该系统以车牌识别技术为核心加上其他高科技手段,建立起无人自动监测系统,可以有效地用于解决因在高速公路上超速行驶造成的交通事故。同时当车辆的速度高于限制值,就可以通过摄像头获取汽车的图像,并识别出获得的车牌的号码,以便于对违章车辆进行罚款。 1.2 课题主要研究的问题

(1)车牌图像预处理的方法? (2)采用何种方法对汽车牌照进行定位? (3)采用何种方法对汽车牌照进行识别? 1.3 系统设计的目标及基本思路 1.3.1 设计目标

本系统主要应用于对车辆图像进行车辆牌照的定位和车牌字符的识别,根据这一实际应用背景,确定了系统设计的三个目标:实用性、高速性和鲁棒性。

实用性:该系统主要应用于车辆管理,以及其他与车牌有关系的领域,所以具有很重要的实用价值,为了提高其实用价值,要充分考虑系统在应用中所遇到的问题,防止由于识别的偏差导致结果的不正确,影响工作的进程,降低工作的效率。

高速性:由于本系统处理的对象为运动中的车辆,在实际应用过程中,提交给系统的车辆图像间隔时间较短,因此本系统必须能够高速地对车辆图像进行分析处理,并获得结果。

鲁棒性:在整个车牌自动识别过程中,本系统首先从图像中准确获得车辆牌照的区域,继而对车牌区域的字符正确识别。而在实际应用过程中,系统获得的车辆图像必然会有参数不规范的现象,因此本系统必须能够适应各类图像并能够对输入的车辆图像具有较高的定位准确率。

2

重庆理工大学毕业论文 车牌定位与识别的设计与实现

1.3.2 基本思路

由于车辆牌照相对于车辆本身以及周围环境,具有其独有的特征,所以在车牌的定位过程中,一般采取的办法是利用车牌区域的特征来判断牌照,将车牌区域从整幅车辆图像中分割出来。利用的车牌特征主要包括:

(1)车牌区域边缘灰度与外部区域存在明显的灰度差异。 (2)车牌的几何特征,即车牌的高、宽和高宽比在一定范围内。 (3)车牌区域的字符与背景颜色之间存在明显的灰度差异。

(4)车牌区域水平或垂直投影特征,车牌区域水平或垂直投影呈现连续的峰-谷-峰的分布。

本系统针对车辆牌照的这一系列特征,采用基于行扫描灰度跳变分析的基本思路进行车辆牌照的定位方法。该方法首先通过对灰度图像进行二值化、边缘检测、滤波等处理,获得较理想的供定位图像,然后对该图像进行垂直和水平方向的行扫描,结合车辆牌照的上述特点,通过分析图像的灰度跳变特征,对车辆牌照进行定位[1]。

车辆牌照定位后对牌照区域字符进行分割,将分割好的字符进行二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选

3

重庆理工大学毕业论文 车牌定位与识别的设计与实现

2 图像预处理

图像预处理是车牌定位的准备工作,以提高车牌图像的适用性。从采集卡获得的原始图像不仅包括汽车牌照,而且还有汽车本身和汽车的背景图像,因此必须去掉这些非牌照图像的影响,才有可能正确的提取出牌照区域,为后面的车牌字符识别打下基础。在实际应用中,由于季节的更替、自然光照度的昼夜变化、光照的稳定性与均匀性、车辆自身的运动、观察点不同(摄像机的角度、位置、观察角度等)、采集图像的设备本身的因素等的影响,图像传感器所获取的图像有时并不令人满意,存在各种各样的噪声。因而必须对图像进行预处理,以改善图像质量,提高字符识别率。 2.1汽车牌照的特征

车牌识别系统需要全天候工作,在白天、黑夜、阴天、晴天、雨雪、逆光等情况下无故障地进行工作。尤其是在强光照射下,得到的数字图像各处反光不均匀,在夜间的时候,汽车前灯往往造成数字图像亮度不均匀,对比度较低,这些情况往往需要进行直方图均衡操作。当车辆速度很高时,会造成拍摄的图片模糊,甚至变形。路面问题,现在国内很多路面条件较差,常常会导致车牌污染严重、倾斜、甚至变形。从而使得获得的图片质量很差,会造成识别困难。在车辆车牌中包含汉字、字母和数字,其中字母和数字识别比较简单,汉字字符笔画繁多、结构复杂,识别困难,因此需要得到的数字图像有较高的分辨率,对应算法有较高的抗干扰性。

汽车牌照作为车辆的唯一身份标识,其特征也就成为车牌定位的重要参考依据。车辆牌照的特征有形状特征、字符特征和灰度变化特征等。车牌定位系统在处理这些特征时将会应用到数字图像处理技术[2]。

(1)形状特征

标准车牌的宽、高、以及宽高比一定。车牌的边缘是线段围成的有规则的矩形,大小变化有一定的范围。汽车前车牌的标准外轮廓尺寸为440x140,每个字

4

重庆理工大学毕业论文 车牌定位与识别的设计与实现

符宽度为45,高度为90,间隔符宽10,字符间隔12。整个车牌的宽高比近似为3:1。实际中摄像机的拍摄角度不同,拍摄到的车牌宽高比例会有所差别。

(2)字符特征

标准车牌首位为省名简称,共有31个字符(不考虑军、警车);次位为英文字母(除去“I”)共25个英文大写字母;后面五位为英文字母或阿拉伯数字(字母除去字母“I”和字母“O”),共有34个字符。

(3)灰度变化特征

车牌的底色、边缘颜色以及车牌外的颜色都是不相同的,表现在图像中就是灰度级互不相同,这样在车牌边缘形成了灰度突变边界。实际上,车牌的边缘在灰度上的表现是一种屋脊状边缘;在车牌区域内部,穿过车牌的水平直线其灰度呈现连续的波峰、波谷、波峰的分布;车牌区域内的边缘灰度直方图具有两个明显并且分离的分布中心;车牌区域内的水平和垂直投影呈现连续的波峰、波谷、波峰的分布。这部分特征主要用在对灰度图像进行车牌定位、字符分割方面[3]。 2.2 灰度变换

灰度图是指只包含亮度信息,不包含色彩信息的图像,例如平时看到的亮度连续变化的黑白照片就是一幅灰度图。灰度化处理就是将一幅彩色图像转化为灰度图像的过程。彩色图像分为R、G、B 三个分量,分别显示出红、绿、蓝等各种颜色,灰度化就是使彩色的R、G、B 分量相等的过程。灰度值大的像素点比较亮(像素值最大为255,为白色),反之比较暗(像素值最小为0,是黑色)。

本次灰度图像变换的实现采用了rgb2gray函数 rgb2gray:转换RGB图像或颜色映像表为灰度图像 格式:I=rgb2gray(RGB) I=rgb2gray(A)

原始图像和灰度图如图2-1、2-2所示:

5

搜索更多关于: 车牌识别设计与实现毕业论文 的文档
车牌识别设计与实现毕业论文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7nn7g2uvj27px008twlp8xswm2yhl0015hg_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top