因此B(?11123,?).又F2(1,0),所以直线BF2:y?(x?1). 5543?y?(x?1)??1342. x?由?2,得,解得或x??17x?6x?13?027?x?y?1?3?4又因为E是线段BF2与椭圆的交点,所以x??1. 将x??1代入y?解法二:
333(x?1),得y??.因此E(?1,?). 422x2y2由(1)知,椭圆C:??1.如图,连结EF1.
43因为BF2=2a,EF1+EF2=2a,所以EF1=EB, 从而∠BF1E=∠B.
因为F2A=F2B,所以∠A=∠B, 所以∠A=∠BF1E,从而EF1∥F2A. 因为AF2⊥x轴,所以EF1⊥x轴.
?x??13?因为F1(-1,0),由?x2y2,得y??.
2?1??3?4又因为E是线段BF2与椭圆的交点,所以y??因此E(?1,?).
18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建
模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:
(1)过A作AE?BD,垂足为E.
由已知条件得,四边形ACDE为矩形,DE?BE?AC?6, AE?CD?8.' 因为PB⊥AB,
所以cos?PBD?sin?ABE?3. 23284?. 105
所以PB?BD12??15.
cos?PBD45因此道路PB的长为15(百米).
(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求. ②若Q在D处,连结AD,由(1)知AD?AE2?ED2?10,
AD2?AB2?BD27??0,所以∠BAD为锐角. 从而cos?BAD?2AD?AB25所以线段AD上存在点到点O的距离小于圆O的半径. 因此,Q选在D处也不满足规划要求. 综上,P和Q均不能选在D处. (3)先讨论点P的位置.
当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求; 当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.
?AB,由(1)知,P1B=15, 设P1为l上一点,且PB1此时PD?PB?PB11sin?PBD11cos?EBA?15?3?9; 5?15. 当∠OBP>90°时,在△PPB中,PB?PB11由上可知,d≥15. 再讨论点Q的位置.
由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,
CQ?QA2?AC2?152?62?321.此时,线段QA上所有点到点O的距离均不小于
圆O的半径.
综上,当PB⊥AB,点Q位于点C右侧,且CQ=321时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+321. 因此,d最小时,P,Q两点间的距离为17+321(百米). 解法二:
(1)如图,过O作OH⊥l,垂足为H.
以O为坐标原点,直线OH为y轴,建立平面直角坐标系.
因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,?3. 因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25. 从而A(4,3),B(?4,?3),直线AB的斜率为因为PB⊥AB,所以直线PB的斜率为?直线PB的方程为y??3. 44, 3425. x?33所以P(?13,9),PB?(?13?4)2?(9?3)2?15. 因此道路PB的长为15(百米).
(2)①若P在D处,取线段BD上一点E(?4,0),则EO=4<5,所以P选在D处不满足规划要求.
②若Q在D处,连结AD,由(1)知D(?4,9),又A(4,3), 所以线段AD:y??3x?6(?4剟x4). 4215?15?222在线段AD上取点M(3,),因为OM?3????3?4?5,
4?4?所以线段AD上存在点到点O的距离小于圆O的半径. 因此Q选在D处也不满足规划要求. 综上,P和Q均不能选在D处.
(3)先讨论点P的位置.
当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求; 当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.
?AB,由(1)知,P1B=15,此时P1(?13,9); 设P1为l上一点,且PB1?15. 当∠OBP>90°时,在△PPB中,PB?PB11由上可知,d≥15. 再讨论点Q的位置.
由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由AQ?(a?4)2?(9?3)2?15(a?4),得a=4?321,所以Q(4?321,9),此时,线段QA上所有点到点O的距离均不小于圆O的半径.
综上,当P(?13,9),Q(4?321,9)时,d最小,此时P,Q两点间的距离
PQ?4?321?(?13)?17?321.
因此,d最小时,P,Q两点间的距离为17?321(百米).
19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题
以及逻辑推理能力.满分16分.
解:(1)因为a?b?c,所以f(x)?(x?a)(x?b)(x?c)?(x?a). 因为f(4)?8,所以(4?a)?8,解得a?2. (2)因为b?c,
所以f(x)?(x?a)(x?b)?x?(a?2b)x?b(2a?b)x?ab, 从而f'(x)?3(x?b)?x?因为a,b,232233??2a?b?2a?b.令,得或. f'(x)?0x?bx??3?32a?b,都在集合{?3,1,3}中,且a?b, 32a?b所以?1,a?3,b??3.
3此时f(x)?(x?3)(x?3),f'(x)?3(x?3)(x?1).
2
相关推荐: