解得p?2,∴抛物线的方程为x2?4y. (2)由已知得,直线l1:y?kx?1. ?y?kx?1由?2 消去y得x2?4kx?4?0, ?x?4y这时,??16k2?1?0恒成立,AB?1?k216?k2?1??4?k2?1?. ?y?kx?1同理,直线l2:y?kx?1,由?2 消去y得x2?4kx?4?0,
?x?4y??由??16k2?1?0得k2?1,CD?1?k216?k2?1??4又∵直线l1,l2间的距离d?22???k2?1??k2?1?,
,
k?11则四边形ABDC的面积S??d??AB?CD??42?k2?1?k2?1.
?解方程4?k2?1?k2?1?4??3?1得,k2有唯一实数解2 (满足大于1),
?∴满足条件的k的值为?2. 21.(1)f?x?的定义域为?0,???,f??x??x2?2?1?a?x?1x?x?1?2.
考虑y?x2?2(1?a)x?1,x?0.
①当??0,即0?a?2时,f??x??0恒成立,f?x?在?0,???上单调递增; ②当?? 0,即a?2或a?0时,由x2?2(1?a)x?1?0得x?a?1?a2?2a. 若a?0,则f??x??0恒成立,此时f?x?在?0,???上单调递增; 若a?2,则a?1?a2?2a?a?1?a2?2a?0,
此时f??x??0?0?x?a?1?a2?2a或x?a?1?a2?2a;
f??x??0?a?1?a2?2a?x?a?1?a2?2a .
综上,当a?2时,函数f?x?的单调递增区间为?0,???,无单调递减区间, 当a?2时,f?x?的单调递增区间为0,a?1?a2?2a,a?1?a2?2a,??, 单调递减区间为a?1?a2?2a,a?1?a2?2a.
??????(2)当a?1时,f?x??令g?x??f?x??x?1x?1?f?x???0. 22x?12x?1, ?lnx??2x?1221212?x?x3??x?1??x?x?2?. g??x??????222x?x?1?22x?x?1?2x?x?1?当x?1时,g?(x)?0;当0?x?1时,g?(x)?0,
∴g?x?在?0,1?上单调递增,在?1,???上单调递减,即当x?1时,g?x?取得最大值, 故g?x??g?1??0,即f?x??x?1成立,得证. 222. (1)由??2cos??0得:?2?2?cos??0. 因为?2?x2?y2,?cos??x,所以x2?y2?2x?0, 即曲线C2的普通方程为?x?1??y2?1.
(2)由(1)可知,圆C2的圆心为C2?1,0?,半径为1. 设曲线C1上的动点M?3cos?,2sin??, 由动点N在圆C2上可得:MNmin?MC2∵MC2? 当cos??min2?1.
?3cos??1?3时,MC25min2?4sin2??5cos2??6cos??5 ?45, 5min∴MNmin?MC2?1?45?1. 523.(1)f?x??f?x?1??1?2x?1?2x?1?1,
111??1??x????x??x??或?2或? ??222??2x?1?2x?1?1??1?2x?2x?1?1??1?2x?2x?1?11111或??x??x??, 2424?1?所以,原不等式的解集为??,???.
?4??x??m有解,则m??2x?1?2x?1 (2)由条件知,不等式2x?1?2x?1 ?min即可. ?1?2x?2x?1?1?2x??2x?1??2, 由于2x?1?2x?1 ?11?当且仅当?1?2x??2x?1??0,即当x???,?时等号成立,故 m?2.
?22?所以,m的取值范围是?2,???.
相关推荐: