Un?1?n?1?!3n?1lim?limn?1?n??Un??3?1n!n3n?1?lim?n?1??n?1n??3?1???
(2)
所以原级数发散.
Un?13n?1n?2nlim?lim?nn?1n??Un?????23n?1n?lim?3n2?n?1?
n??(3)
所以原级数发散.
3?12Un?12n?1??n?1?!nnlim?lim?nn?1n??Un???2?n!?n?1n?n??lim2??n???n?1?12?2lim??1nn??e?1??1???n?nn(4)
故原级数收敛.
7.用根值判别法判别下列级数的敛散性:
?5n????3n?1??(1) n?1?n????3n?1??n?1(3)
??; (2)
??ln?n?1?1n?1??n;
2n?1;
?b???a?n?1?n?(4)
?n??n,其中an→a(n→∞),an,b,a均为正数.
解:(1)
故原级数发散.
n??limnUn?lim5n5??1n??3n?13,
limnUn?lim(2)
故原级数收敛.
1ln?n?1?2?n???0?1,
1n?n?limnUn?lim??n??n???3n?1?(3)
故原级数收敛.
n?1?19,
bb?b?limn???lim?n??n??aa?an?n(4) ,
bb当ba时,ab>1,原级数发散;当b=a时,a=1,无法判定其敛散性.
8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?
?1111n?1??1????L?1?ln?n?1?; 234n?1(1); (2)
11111111???2??3??4?L5353(3) 5353;
nn?12??1??n!(4)n?1??2; (5)
???1?n?1n?1?1n????R?;
n1???1??11?1???L???23n?n(6) n?1?.
Un???1?解:(1)
n?11n?,级数n?Unn?1?是交错级数,且满足111?lim?0n??nn?1,n,由莱布
?U尼茨判别法级数收敛,又
n?1??n?1??1n12是P<1的P级数,所以
?Un?1?n发散,故原级数条件收敛.
Un???1?(2)
n?11ln?n?1?,n?1???1?n?1111ln?n?1?ln?n?1?为交错级数,且ln?n?1??1ln?n?2?,
lim1ln?n?1?n???0,由莱布尼茨判别法知原级数收敛,但由于
Un??1n?1
所以,
?Un?1?n发散,所以原级数条件收敛.
1Un???1?n?15?3n(3)
11?1Un????n?n5?35n?13n?1民,显然n?1??1?n3n?1,而
?是收敛的等比级数,故
?Un?1?n收敛,所以原级数绝对收敛.
Un?122n?1lim?lim???n??Un??n?1n(4)因为.
故可得∴n??Un?1?Un,得n??limUn?0,
limUn?0,原级数发散.
(5)当α>1时,由级数
?n?n?1?n?1??1收敛得原级数绝对收敛.
当0<α≤1时,交错级数
???1?n?1n?11n?11???n??n?1满足条件:
1?0n??n?;,由莱布尼茨判别lim法知级数收敛,但这时当α≤0时,n?????1?n?1?11???n?n?1n发散,所以原级数条件收敛.
limUn?0,所以原级数发散.
1?11?111???L?????23n?nn (6)由于?1?而n?1n发散,由此较审敛法知级数
n1???1??11??1???L???23n?nn?1???发散.
1?1?11Un??1???L???n?n,则 ?23记
11??11??11Un?Un?1??1???L??????2n??nn?1??n?1??2311?1?11??1???L???2n?n?n?1??n?1??2311??1?1?11?????L????2?n?n?n?1??n?n?1??n?1???23?0
即
Un?Un?1
1?111?limUn?lim?1???L??n??n??n?23n?1n1??dxn0x又
11t1lim?dx?limt?00xt???1由t???t
n1???1??11?1???L????limUn?023n?n知n??,由莱布尼茨判别法,原级数n?1??收敛,而且是条件收敛.
9.判别下列函数项级数在所示区间上的一致收敛性.
(1)
??n?1?!n?1??xn,x∈[-3,3];
xn?2nn?1(2)
??,x∈[0,1];
sinnx?n3n?1(3) ,x∈(-∞,+∞);
e?nx?n!(4) n?1,|x|<5;
?(5)
n?1?cosnx3n5?x2,x∈(-∞,+∞)
xn解:(1)∵
?n?1?!??3n?n?1?!,x∈[-3,3],
3n收敛,所以原级数在 [-3,3]上一致收敛.
而由比值审敛法可知
??n?1?!n?1(2)∵
1xn?2n2n,x∈[0,1],
1?2而n?1n(3)∵
??收敛,所以原级数在[0,1]上一致收敛.
1sinnx?3n3n1n,x∈(-∞,+∞),
而
?3n?1是收敛的等比级数,所以原级数在(-∞,+∞)上一致收敛.
5ne?nxe?n!n!?(4)因为,x∈(-5,5),
e5n?n!由比值审敛法可知n?1收敛,故原级数在(-5,5)上一致收敛.
cosnx3(5)∵n5?x253?1n53,x∈(-∞,+∞),
?而
n?1?1n是收敛的P-级数,所以原级数在(-∞,+∞)上一致收敛.
?10.若在区间Ⅰ上,对任何自然数n.都有|Un(x)|≤Vn(x),则当
?Vn?1n?x?在Ⅰ上一致收敛时,级数
?Un?1?n?x?在这区间Ⅰ上也一致收敛.
证:由n?1在Ⅰ上一致收敛知, ?ε>0,?N(ε)>0,使得当n>N时,?x∈Ⅰ有 |Vn+1(x)+Vn+2(x)+…+Vn+p(x)|<ε,
于是,?ε>0,?N(ε)>0,使得当n>N时,?x∈Ⅰ有
|Un+1(x)+Un+2(x)+…+Un+p(x)|≤Vn+1(x)+Vn+2(x)+…+Vn+p(x) ≤|Vn+1(x)+Vn+2(x)+…+Vn+p(x)|<ε,
?V?n?x?因此,级数n?1在区间Ⅰ上处处收敛,由x的任意性和与x的无关性,可知致收敛.
11.求下列幂级数的收敛半径及收敛域:
?U?n?x??Un?1?n?x?在Ⅰ上一
(1)x+2x+3x+…+nx+…;
23n?x?n!????n?n?1(2)
??n;
x2n?1?2n?1; (3)n?1??x?1?n?n2?2n(4)n?1;
??lim解:(1)因为
?n??an?1n?11?lim?1R??1n??nan?,所以收敛半径收敛区间为(-1,1),而当x=±1
n时,级数变为
???1?n?1n,由
lim(?1)n?0x?nn知级数
?(?1)n?1?nn发散,所以级数的收敛域为(-1,1).
?1(2)因为
nan?1??1?n??n?1?!nn?n??1??lim?lim??lim?lim?e1????n?1??n??an???n!n???n?1?n????n?1??n??n
R?所以收敛半径
1??e,收敛区间为(-e,e).
?enn?1?x?x?eelim???nn;应用洛必达法则求得x?0x2,故有当x=e时,级数变为n?1?an?1?1?1????1limn?n??2由拉阿伯判别法知,?an?级数发散;易知x=-e时,级数也发散,故收敛域为(-e,e).
(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.
1Un?1x2n?12n?1lim?lim?2n?1n??Un??2n?1xn?lim?x2n??2n?12?x2n?1 2
2
所以当x<1即|x|<1时,级数收敛,x>1即|x|>1时,级数发散,故收敛半径R=1.
12n?1?1?0lim??1?1n??12??n当x=1时,级数变为n?12n?1,当x=-1时,级数变为n?12n?1,由知,
??1?1??n?12n?1发散,从而n?12n?1也发散,故原级数的收敛域为(-1,1).
an?1n2?2ntn??lim?lim?1?22n??an?????2??n?2nn?1n?1n(4)令t=x-1,则级数变为n?1,因为
?所以收敛半径为R=1.收敛区间为 -1 1?32nn?1当t=1时,级数 ?收敛,当t=-1时,级数 ???1?nn?1?12?n3为交错级数,由莱布尼茨判别法知其收 敛. 所以,原级数收敛域为 0≤x≤2,即[0,2] 12.利用幂级数的性质,求下列级数的和函数: (1) ?nxn?1?n?2; x2n?2?2n?1; (2) n?0??n?1?xn?3lim?xn?2n??nx解:(1)由 S?x???nxn?1x??n?2知,当|x|=<1时,原级数收敛,而当|x|=1时,n?1于0,从而发散,故级数的收敛域为(-1,1). ?nx??n?2的通项不趋 ?x3记 ?nxn?1?n?1易知 ?nxn?1?n?1的收敛域为(-1,1),记 S1?x???nxn?1n?1 则 ?0S1?x???xn?n?1x1?x 1?x??S1?x?????2??1?x??1?x于是 S?x??,所以 x3?1?x?2?x?1? x2n?42n?12lim?x?n??2n?3x2n?2(2)由知,原级数当|x|<1时收敛,而当|x|=1时,原级数发散,故原级数的收
相关推荐: